Skip to main content

Computer Vision-Based Image Analysis of Bacteria

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1535))

Abstract

Microscopy is an essential tool for studying bacteria, but is today mostly used in a qualitative or possibly semi-quantitative manner often involving time-consuming manual analysis. It also makes it difficult to assess the importance of individual bacterial phenotypes, especially when there are only subtle differences in features such as shape, size, or signal intensity, which is typically very difficult for the human eye to discern. With computer vision-based image analysis — where computer algorithms interpret image data — it is possible to achieve an objective and reproducible quantification of images in an automated fashion. Besides being a much more efficient and consistent way to analyze images, this can also reveal important information that was previously hard to extract with traditional methods. Here, we present basic concepts of automated image processing, segmentation and analysis that can be relatively easy implemented for use with bacterial research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Danuser G (2011) Computer vision in cell biology. Cell 147(5):973–978. doi:10.1016/j.cell.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  2. Sinha P, Balas B, Otrovsky Y, Russel R (2006) Face recognition by humans: nineteen results all computer vision researchers should know about. Proc IEEE 94(11):1948–1962. doi:10.1109/JPROC.2006.884093

    Article  Google Scholar 

  3. Smith R (2009) Hybrid page layout analysis via tab-stop detection. Paper presented at the Proceedings of the 10th international conference on document analysis and recognition, Barcelona

    Google Scholar 

  4. Computer Vision in Medical Imaging (2014), vol 2. Computer Vision

    Google Scholar 

  5. Lojk J, Sajn L, Cibej U, Pavlin M (2014) Automatic cell counter for cell viability estimation. Paper presented at the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija

    Google Scholar 

  6. Farnoush A (1977) The application of an image analyzing computer (Quantimet 720) for quantitation of biological structures—the automatic counting of mast cells. Microsc Acta 80(1):43–47

    CAS  PubMed  Google Scholar 

  7. Selinummi J, Seppälä J, Yli-Harja O, Puhakka JA (2005) Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques 39(6):859–863. doi:10.2144/000112018

    Article  CAS  PubMed  Google Scholar 

  8. Forero MG, Crisóbal G, Sroubek F (2004) Identification of tuberculosis bacteria based on shape and color. Real-Time Imaging 10(4):251–262. doi:10.1016/j.rti.2004.05.007

    Article  Google Scholar 

  9. Forero MG, Crisóbal G, Alvarez-Borrego J (2006) Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models. J Microsc 223(2):120–132. doi:10.1111/j.1365-2818.2006.01610.x

    Article  CAS  PubMed  Google Scholar 

  10. Vallotton P, Sun C, Wang D, Turnbull L, Ranganathan P (2009) Segmentation and tracking individual Pseudomonas aeruginosa bacteria in dense populations of motile cells. Paper presented at the Image and vision computing New Zealand, 24th International Conference, Wellington

    Google Scholar 

  11. Jung CR, Scharcanski J (2005) Robust watershed segmentation using wavelets. Image Vis Comput 23(7):661–669. doi:10.1016/j.imavis.2005.03.001

    Article  Google Scholar 

  12. Mahmoudi L, El Zaart A (2012) A survey of entropy image thresholding techniques. Paper presented at the 2012 2nd International conference on advances in computational tools for engineering applications (ACTEA), Beirut

    Google Scholar 

  13. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698. doi:10.1109/TPAMI.1986.4767851

    Article  CAS  PubMed  Google Scholar 

  14. Lindeberg T (1998) Edge detection and ridge detection with automatic scale selection. Int J Comput Vis 30(1):117–154. doi:10.1023/A:1008097225773

    Article  Google Scholar 

  15. Kass M, Witkin A, Tersopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331. doi:10.1007/BF00133570

    Article  Google Scholar 

  16. Meyer F (1994) Topographic distance and watershed lines. Signal Process 38(1):113–125. doi:10.1016/0165-1684(94)90060-4

    Article  Google Scholar 

  17. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. doi:10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  18. Ping-Sung L, Tse-Sheng C, Pau-Choo C (2001) A fast algorithm for multilevel thresholding. J Inf Sci Eng 17:713–727

    Google Scholar 

  19. Zhang Y, Wu L (2011) Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach. Entropy 13(4):841–859. doi:10.3390/e13040841

    Article  Google Scholar 

  20. Fang M, Yue G, QingCang Y The study on an application of Otsu method in Canny operator. In: Proceedings of the 2009 International Symposium on Information Processing, Huangshan, P. R. China, 21–23 August 2009. p 109–112

    Google Scholar 

  21. Zahara E, Fan S-KS, Tsai D-M (2005) Optimal multi-thresholding using a hybrid optimization approach. Pattern Recognit Lett 26:1082–1095. doi:10.1016/j.patrec.2004.10.003

    Article  Google Scholar 

  22. Huang D-Y, Wang C-H (2009) Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recognit Lett 30:275–284. doi:10.1016/j.patrec.2008.10.003

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Crafoord Foundation, the Swedish Research Council, the Swedish Society of Medicine, and the O.E. and Edla Johansson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pontus Nordenfelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Danielsen, J., Nordenfelt, P. (2017). Computer Vision-Based Image Analysis of Bacteria. In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 1535. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6673-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6673-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6671-4

  • Online ISBN: 978-1-4939-6673-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics