Skip to main content

The Vast Universe of T Cell Diversity: Subsets of Memory Cells and Their Differentiation

  • Protocol
  • First Online:
T-Cell Differentiation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1514))

Abstract

The T cell receptor confers specificity for antigen recognition to T cells. By the first encounter with the cognate antigen, reactive T cells initiate a program of expansion and differentiation that will define not only the ultimate quantity of specific cells that will be generated, but more importantly their quality and functional heterogeneity. Recent achievements using mouse model infection systems have helped to shed light into the complex network of factors that dictate and sustain memory T cell differentiation, ranging from antigen load, TCR signal strength, metabolic fitness, transcriptional programs, and proliferative potential. The different models of memory T cell differentiation are discussed in this chapter, and key phenotypic and functional attributes of memory T cell subsets are presented, both for mouse and human cells. Therapeutic manipulation of memory T cell generation is expected to provide novel unique ways to optimize current immunotherapies, both in infection and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloch H (1993) Edward Jenner (1749–1823). The history and effects of smallpox, inoculation, and vaccination. Am J Dis Child 147(7):772–774

    Article  CAS  PubMed  Google Scholar 

  2. Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 18(1):21–25

    Google Scholar 

  3. Kaech SM, Hemby S, Kersh E, Ahmed R (2002) Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111(6):837–851

    Article  CAS  PubMed  Google Scholar 

  4. Wherry EJ, Ahmed R (2004) Memory CD8 T-cell differentiation during viral infection. J Virol 78(11):5535–5545. doi:10.1128/JVI.78.11.5535-5545.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27(4):670–684. doi:10.1016/j.immuni.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  6. Harty JT, Badovinac VP (2008) Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol 8(2):107–119. doi:10.1038/nri2251

    Article  CAS  PubMed  Google Scholar 

  7. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460(7251):108–112. doi:10.1038/nature08155, nature08155 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bannard O, Kraman M, Fearon D (2009) Pathways of memory CD8+ T-cell development. Eur J Immunol 39(8):2083–2087. doi:10.1002/eji.200939555

    Article  CAS  PubMed  Google Scholar 

  9. Kalia V, Sarkar S, Ahmed R (2010) CD8 T-cell memory differentiation during acute and chronic viral infections. Adv Exp Med Biol 684:79–95

    Article  CAS  PubMed  Google Scholar 

  10. Prlic M, Williams MA, Bevan MJ (2007) Requirements for CD8 T-cell priming, memory generation and maintenance. Curr Opin Immunol 19(3):315–319. doi:10.1016/j.coi.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  11. Crawford F, Kozono H, White J, Marrack P, Kappler J (1998) Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8(6):675–682

    Article  CAS  PubMed  Google Scholar 

  12. D'Cruz LM, Rubinstein MP, Goldrath AW (2009) Surviving the crash: transitioning from effector to memory CD8+ T cell. Semin Immunol 21(2):92–98. doi:10.1016/j.smim.2009.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gerlach C, van Heijst JW, Swart E, Sie D, Armstrong N, Kerkhoven RM, Zehn D, Bevan MJ, Schepers K, Schumacher TN (2010) One naive T cell, multiple fates in CD8+ T cell differentiation. J Exp Med 207(6):1235–1246. doi:10.1084/jem.20091175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, Killeen N, Orange JS, Russell SM, Weninger W, Reiner SL (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315(5819):1687–1691. doi:10.1126/science.1139393

    Article  CAS  PubMed  Google Scholar 

  15. Ciocca ML, Barnett BE, Burkhardt JK, Chang JT, Reiner SL (2012) Cutting edge: asymmetric memory T cell division in response to rechallenge. J Immunol 188(9):4145–4148. doi:10.4049/jimmunol.1200176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lanzavecchia A, Sallusto F (2002) Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2(12):982–987. doi:10.1038/nri959

    Article  CAS  PubMed  Google Scholar 

  17. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L, Kaech SM (2007) Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27(2):281–295. doi:10.1016/j.immuni.2007.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wiesel M, Crouse J, Bedenikovic G, Sutherland A, Joller N, Oxenius A (2012) Type-I IFN drives the differentiation of short-lived effector CD8+ T cells in vivo. Eur J Immunol 42(2):320–329. doi:10.1002/eji.201142091

    Article  CAS  PubMed  Google Scholar 

  19. Obar JJ, Jellison ER, Sheridan BS, Blair DA, Pham QM, Zickovich JM, Lefrancois L (2011) Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation. J Immunol 187(10):4967–4978. doi:10.4049/jimmunol.1102335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuzefpolskiy Y, Baumann FM, Kalia V, Sarkar S (2015) Early CD8 T-cell memory precursors and terminal effectors exhibit equipotent in vivo degranulation. Cell Mol Immunol 12(4):400–408. doi:10.1038/cmi.2014.48

    Article  CAS  PubMed  Google Scholar 

  21. Badovinac VP, Harty JT (2007) Manipulating the rate of memory CD8+ T cell generation after acute infection. J Immunol 179(1):53–63

    Article  CAS  PubMed  Google Scholar 

  22. Youngblood B, Hale JS, Ahmed R (2015) Memory CD8 T cell transcriptional plasticity. F1000Prime Rep 7:38. doi:10.12703/P7-38

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chang JT, Wherry EJ, Goldrath AW (2014) Molecular regulation of effector and memory T cell differentiation. Nat Immunol 15(12):1104–1115. doi:10.1038/ni.3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaech SM, Cui W (2012) Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol 12(11):749–761. doi:10.1038/nri3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schenkel JM, Masopust D (2014) Tissue-resident memory T cells. Immunity 41(6):886–897. doi:10.1016/j.immuni.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gattinoni L (2014) Memory T cells officially join the stem cell club. Immunity 41(1):7–9. doi:10.1016/j.immuni.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  27. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712. doi:10.1038/44385

    Article  CAS  PubMed  Google Scholar 

  28. Jamieson BD, Ahmed R (1989) T cell memory. Long-term persistence of virus-specific cytotoxic T cells. J Exp Med 169(6):1993–2005

    Article  CAS  PubMed  Google Scholar 

  29. Oldstone MB, Ahmed R, Byrne J, Buchmeier MJ, Riviere Y, Southern P (1985) Virus and immune responses: lymphocytic choriomeningitis virus as a prototype model of viral pathogenesis. Br Med Bull 41(1):70–74

    CAS  PubMed  Google Scholar 

  30. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, von Andrian UH, Ahmed R (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4(3):225–234. doi:10.1038/ni889

    Article  CAS  PubMed  Google Scholar 

  31. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4(12):1191–1198. doi:10.1038/ni1009

    Article  CAS  PubMed  Google Scholar 

  32. Zehn D, Lee SY, Bevan MJ (2009) Complete but curtailed T-cell response to very low-affinity antigen. Nature 458(7235):211–214. doi:10.1038/nature07657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schluns KS, Klonowski KD (2015) Protecting the borders: tissue-resident memory T cells on the front line. Front Immunol 6:90. doi:10.3389/fimmu.2015.00090

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shin H, Iwasaki A (2013) Tissue-resident memory T cells. Immunol Rev 255(1):165–181. doi:10.1111/imr.12087

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, Vega-Ramos J, Lauzurica P, Mueller SN, Stefanovic T, Tscharke DC, Heath WR, Inouye M, Carbone FR, Gebhardt T (2013) The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol 14(12):1294–1301. doi:10.1038/ni.2744

    Article  CAS  PubMed  Google Scholar 

  36. Cauley LS, Lefrancois L (2013) Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol 6(1):14–23. doi:10.1038/mi.2012.96

    Article  CAS  PubMed  Google Scholar 

  37. Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D (2014) T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346(6205):98–101. doi:10.1126/science.1254536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wakim LM, Gupta N, Mintern JD, Villadangos JA (2013) Enhanced survival of lung tissue-resident memory CD8(+) T cells during infection with influenza virus due to selective expression of IFITM3. Nat Immunol 14(3):238–245. doi:10.1038/ni.2525

    Article  CAS  PubMed  Google Scholar 

  39. Turner DL, Bickham KL, Thome JJ, Kim CY, D'Ovidio F, Wherry EJ, Farber DL (2014) Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol 7(3):501–510. doi:10.1038/mi.2013.67

    Article  CAS  PubMed  Google Scholar 

  40. Frost EL, Kersh AE, Evavold BD, Lukacher AE (2015) Cutting edge: resident memory CD8 T cells express high-affinity TCRs. J Immunol 195(8):3520–3524. doi:10.4049/jimmunol.1501521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J, Smyth G, Bevan MJ (2012) The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J Immunol 189(7):3462–3471. doi:10.4049/jimmunol.1201305

    Article  CAS  PubMed  Google Scholar 

  42. Gebhardt T, Mackay LK (2012) Local immunity by tissue-resident CD8(+) memory T cells. Front Immunol 3:340. doi:10.3389/fimmu.2012.00340

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL, Song K, Klatt NR, Brenchley JM, Vaccari M, Gostick E, Price DA, Waldmann TA, Restifo NP, Franchini G, Roederer M (2013) Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest 123(2):594–599. doi:10.1172/JCI66327

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, Wang E, Douek DC, Price DA, June CH, Marincola FM, Roederer M, Restifo NP (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297. doi:10.1038/nm.2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, Paulos CM, Muranski P, Restifo NP (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15(7):808–813. doi:10.1038/nm.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lugli E, Gattinoni L, Roberto A, Mavilio D, Price DA, Restifo NP, Roederer M (2013) Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat Protoc 8(1):33–42. doi:10.1038/nprot.2012.143

    Article  CAS  PubMed  Google Scholar 

  47. Scholz G, Jandus C, Zhang L, Grandclement C, Lopez-Mejia IC, Soneson C, Delorenzi M, Fajas L, Held W, Dormond O, Romero P (2016) Modulation of mTOR signalling triggers the formation of stem cell-like memory T cells. EBioMedicine 4:50–61. doi:10.1016/j.ebiom.2016.01.019

    Article  PubMed  PubMed Central  Google Scholar 

  48. Speiser DE, Utzschneider DT, Oberle SG, Munz C, Romero P, Zehn D (2014) T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat Rev Immunol 14(11):768–774. doi:10.1038/nri3740

    Article  CAS  PubMed  Google Scholar 

  49. Man K, Kallies A (2015) Synchronizing transcriptional control of T cell metabolism and function. Nat Rev Immunol 15(9):574–584. doi:10.1038/nri3874

    Article  CAS  PubMed  Google Scholar 

  50. Park BV, Pan F (2015) Metabolic regulation of T cell differentiation and function. Mol Immunol 28:497–506. doi:10.1016/j.molimm.2015.07.027

    Article  Google Scholar 

  51. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777

    Article  CAS  PubMed  Google Scholar 

  52. van der Windt GJ, Pearce EL (2012) Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 249(1):27–42. doi:10.1111/j.1600-065X.2012.01150.x

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bottcher J, Knolle PA (2015) Global transcriptional characterization of CD8+ T cell memory. Semin Immunol 27(1):4–9. doi:10.1016/j.smim.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  54. Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA (2012) Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 36(3):374–387. doi:10.1016/j.immuni.2012.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, Mullen AC, Gasink CR, Kaech SM, Miller JD, Gapin L, Ryan K, Russ AP, Lindsten T, Orange JS, Goldrath AW, Ahmed R, Reiner SL (2005) Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6(12):1236–1244. doi:10.1038/ni1268

    Article  CAS  PubMed  Google Scholar 

  56. Kallies A, Xin A, Belz GT, Nutt SL (2009) Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 31(2):283–295. doi:10.1016/j.immuni.2009.06.021

    Article  CAS  PubMed  Google Scholar 

  57. Ji Y, Pos Z, Rao M, Klebanoff CA, Yu Z, Sukumar M, Reger RN, Palmer DC, Borman ZA, Muranski P, Wang E, Schrump DS, Marincola FM, Restifo NP, Gattinoni L (2011) Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat Immunol 12(12):1230–1237. doi:10.1038/ni.2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rutishauser RL, Martins GA, Kalachikov S, Chandele A, Parish IA, Meffre E, Jacob J, Calame K, Kaech SM (2009) Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31(2):296–308. doi:10.1016/j.immuni.2009.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vigano S, Utzschneider DT, Perreau M, Pantaleo G, Zehn D, Harari A (2012) Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol 2012:153863. doi:10.1155/2012/153863

    PubMed  PubMed Central  Google Scholar 

  60. Hebeisen M, Schmidt J, Guillaume P, Baumgaertner P, Speiser DE, Luescher I, Rufer N (2015) Identification of rare high-avidity, tumor-reactive CD8+ T cells by monomeric TCR-ligand off-rates measurements on living cells. Cancer Res 75(10):1983–1991. doi:10.1158/0008-5472.CAN-14-3516

    Article  CAS  PubMed  Google Scholar 

  61. Berger CT, Frahm N, Price DA, Mothe B, Ghebremichael M, Hartman KL, Henry LM, Brenchley JM, Ruff LE, Venturi V, Pereyra F, Sidney J, Sette A, Douek DC, Walker BD, Kaufmann DE, Brander C (2011) High-functional-avidity cytotoxic T lymphocyte responses to HLA-B-restricted Gag-derived epitopes associated with relative HIV control. J Virol 85(18):9334–9345. doi:10.1128/JVI.00460-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dutoit V, Rubio-Godoy V, Dietrich PY, Quiqueres AL, Schnuriger V, Rimoldi D, Lienard D, Speiser D, Guillaume P, Batard P, Cerottini JC, Romero P, Valmori D (2001) Heterogeneous T-cell response to MAGE-A10(254–262): high avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res 61(15):5850–5856

    CAS  PubMed  Google Scholar 

  63. Morgan DJ, Kreuwel HT, Fleck S, Levitsky HI, Pardoll DM, Sherman LA (1998) Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160(2):643–651

    CAS  PubMed  Google Scholar 

  64. Anderton SM, Radu CG, Lowrey PA, Ward ES, Wraith DC (2001) Negative selection during the peripheral immune response to antigen. J Exp Med 193(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763. doi:10.1146/annurev.immunol.22.012703.104702

    Article  CAS  PubMed  Google Scholar 

  66. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL, Lerner H, Goldstein M, Sykes M, Kato T, Farber DL (2013) Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38(1):187–197. doi:10.1016/j.immuni.2012.09.020

    Article  CAS  PubMed  Google Scholar 

  67. Romero P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM, Corthesy P, Devevre E, Speiser DE, Rufer N (2007) Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol 178(7):4112–4119

    Article  CAS  PubMed  Google Scholar 

  68. Biasco L, Scala S, Basso Ricci L, Dionisio F, Baricordi C, Calabria A, Giannelli S, Cieri N, Barzaghi F, Pajno R, Al-Mousa H, Scarselli A, Cancrini C, Bordignon C, Roncarolo MG, Montini E, Bonini C, Aiuti A (2015) In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci Transl Med 7(273):273ra213. doi:10.1126/scitranslmed.3010314

    Article  Google Scholar 

  69. Vigano S, Negron J, Ouyang Z, Rosenberg ES, Walker BD, Lichterfeld M, Yu XG (2015) Prolonged antiretroviral therapy preserves HIV-1-specific CD8 T cells with stem cell-like properties. J Virol 89(15):7829–7840. doi:10.1128/JVI.00789-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Abed Maillard S, Montandon N, Rufer N, Waldvogel S, Delorenzi M, Speiser DE (2015) Long-lasting stem cell-like memory CD8+ T cells with a naive-like profile upon yellow fever vaccination. Sci Transl Med 7(282):282ra248. doi:10.1126/scitranslmed.aaa3700

    Article  Google Scholar 

  71. Brunner S, Herndler-Brandstetter D, Weinberger B, Grubeck-Loebenstein B (2011) Persistent viral infections and immune aging. Ageing Res Rev 10(3):362–369. doi:10.1016/j.arr.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  72. Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20(4):250–256

    Article  CAS  PubMed  Google Scholar 

  73. Kim PS, Ahmed R (2010) Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 22(2):223–230. doi:10.1016/j.coi.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P, Castermans E, Thor Straten P, Blank C, Haanen JB, Heemskerk MH, Schumacher TN (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6(7):520–526. doi:10.1038/nmeth.1345

    Article  CAS  PubMed  Google Scholar 

  75. Newell EW, Klein LO, Yu W, Davis MM (2009) Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat Methods 6(7):497–499. doi:10.1038/nmeth.1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jeong YH, Jeon BY, Gu SH, Cho SN, Shin SJ, Chang J, Ha SJ (2014) Differentiation of antigen-specific T cells with limited functional capacity during Mycobacterium tuberculosis infection. Infect Immun 82(1):132–139. doi:10.1128/IAI.00480-13

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, Lazor-Blanchet C, Petruccioli E, Hanekom W, Goletti D, Bart PA, Nicod L, Pantaleo G, Harari A (2013) Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 43(6):1568–1577. doi:10.1002/eji.201243262

    Article  CAS  PubMed  Google Scholar 

  78. Hislop AD, Annels NE, Gudgeon NH, Leese AM, Rickinson AB (2002) Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection. J Exp Med 195(7):893–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottini JC, Romero P (1999) High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 190(5):705–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pinto S, Sommermeyer D, Michel C, Wilde S, Schendel D, Uckert W, Blankenstein T, Kyewski B (2014) Misinitiation of intrathymic MART-1 transcription and biased TCR usage explain the high frequency of MART-1-specific T cells. Eur J Immunol 44(9):2811–2821. doi:10.1002/eji.201444499

    Article  CAS  PubMed  Google Scholar 

  81. Romero P, Cerottini JC, Speiser DE (2006) The human T cell response to melanoma antigens. Adv Immunol 92:187–224. doi:10.1016/S0065-2776(06)92005-7

    Article  CAS  PubMed  Google Scholar 

  82. Cellerai C, Perreau M, Rozot V, Bellutti Enders F, Pantaleo G, Harari A (2010) Proliferation capacity and cytotoxic activity are mediated by functionally and phenotypically distinct virus-specific CD8 T cells defined by interleukin-7R{alpha} (CD127) and perforin expression. J Virol 84(8):3868–3878. doi:10.1128/JVI.02565-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hersperger AR, Martin JN, Shin LY, Sheth PM, Kovacs CM, Cosma GL, Makedonas G, Pereyra F, Walker BD, Kaul R, Deeks SG, Betts MR (2011) Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood 117(14):3799–3808. doi:10.1182/blood-2010-12-322727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, Rimoldi D, Guillaume P, Meidenbauer N, Mackensen A, Rufer N, Lubenow N, Speiser D, Cerottini JC, Romero P, Pittet MJ (2004) Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res 64(8):2865–2873

    Article  CAS  PubMed  Google Scholar 

  85. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE (2011) Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest 121(6):2350–2360. doi:10.1172/JCI46102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, Palmer S, Brockman M, Rathod A, Piechocka-Trocha A, Baker B, Zhu B, Le Gall S, Waring MT, Ahern R, Moss K, Kelleher AD, Coffin JM, Freeman GJ, Rosenberg ES, Walker BD (2007) Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol 8(11):1246–1254. doi:10.1038/ni1515

    Article  CAS  PubMed  Google Scholar 

  87. Lichterfeld M, Mou D, Cung TD, Williams KL, Waring MT, Huang J, Pereyra F, Trocha A, Freeman GJ, Rosenberg ES, Walker BD, Yu XG (2008) Telomerase activity of HIV-1-specific CD8+ T cells: constitutive up-regulation in controllers and selective increase by blockade of PD ligand 1 in progressors. Blood 112(9):3679–3687. doi:10.1182/blood-2008-01-135442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34. doi:10.1056/NEJMoa1504030

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jandus, C., Usatorre, A.M., Viganò, S., Zhang, L., Romero, P. (2017). The Vast Universe of T Cell Diversity: Subsets of Memory Cells and Their Differentiation. In: Lugli, E. (eds) T-Cell Differentiation. Methods in Molecular Biology, vol 1514. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6548-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6548-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6546-5

  • Online ISBN: 978-1-4939-6548-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics