Skip to main content

Purification of Proteins Fused to Maltose-Binding Protein

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1485))

Abstract

Maltose-Binding Protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows the use of a simple capture affinity step on Amylose-Agarose or Dextrin-Sepharose columns, resulting in a protein that is often 70–90 % pure in a single step. In addition to protein isolation applications, MBP provides a high degree of translation, and facilitates the proper folding and solubility of the target protein. This paper describes efficient procedures for isolating highly purified MBP target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nikaido H (1994) Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett 346:55–58

    Article  CAS  PubMed  Google Scholar 

  2. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  PubMed  Google Scholar 

  3. Randall LL, Topping TB, Smith VF, Diamond DL, Hardy SJ (1998) SecB: a chaperone from Escherichia coli. Methods Enzymol 290:444–459

    Article  CAS  PubMed  Google Scholar 

  4. Nomine Y, Ristriani T, Laurent C, Lefevre JF, Weiss E, Trave G (2001) A strategy for optimizing the monodispersity of fusion proteins: application to purification of recombinant HPV E6 oncoprotein. Protein Eng 14:297–305

    Article  CAS  PubMed  Google Scholar 

  5. Sachdev D, Chirgwin JM (1998) Order of fusions between bacterial and mammalian proteins can determine solubility in Escherichia coli. Biochem Biophys Res Commun 244:933–937

    Article  CAS  PubMed  Google Scholar 

  6. Nallamsetty S, Waugh DS (2006) Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr Purif 45:175–182

    Article  CAS  PubMed  Google Scholar 

  7. Raran-Kurussi S, Waugh DS (2012) The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One 7(11):e49589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lebendiker M, Danieli T (2014) Production of prone to aggregate proteins. FEBS Lett 588:236–246. doi:10.1016/j.febslet.2013.10.044

    Article  CAS  PubMed  Google Scholar 

  9. Clifton M et al (2015) A maltose-binding protein fusion construct yields a robust crystallography platform for MCL1. PLoS One 10(4):e0125010

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moon A et al (2010) A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Protein Sci 19(5):901–913

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sheffield P, Garrard S, Derewenda Z (1999) Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr Purif 15(1):34–39

    Article  CAS  PubMed  Google Scholar 

  12. Lebendiker M, Maes M, Friedler A (2015) A screening methodology for purifying proteins with aggregation problems. Methods Mol Biol 1258:261–281

    Article  CAS  PubMed  Google Scholar 

  13. Kapust RB, Waugh DS (2000) Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr Purif 19:312–318

    Article  CAS  PubMed  Google Scholar 

  14. Nallamsetty S, Waugh DS (2007) A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat Protoc 2:383–391

    Article  CAS  PubMed  Google Scholar 

  15. Mohanty A, Simmons CR, Wiener MC (2003) Inhibition of tobacco etch virus protease activity by detergents. Protein Expr Purif 27:109–114

    Article  CAS  PubMed  Google Scholar 

  16. Kapust RB, Tözsér J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic efficiency. Protein Eng 14:993–1000

    Article  CAS  PubMed  Google Scholar 

  17. Nallamsetty S, Austin BP, Penrose KJ, Waugh DS (2005) Gateway vectors for the production of combinatorially-tagged His6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli. Protein Sci 14:2964–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobe B, Ve T, Williams S (2015) Fusion-protein-assisted protein crystallization. Acta Crystallogr F71:861–869

    Google Scholar 

  19. Smith D (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:1313–1322

    Article  Google Scholar 

  20. Golovanov AP, Hautbergue GM, Wilson SA, Lian LY (2004) A simple method for improving protein solubility and long-term stability. J Am Chem Soc 126:8933–8939

    Article  CAS  PubMed  Google Scholar 

  21. Riggs P (2000) Expression and purification of recombinant proteins by fusion to maltose-binding protein. Mol Biotechnol 15:51–63

    Article  CAS  PubMed  Google Scholar 

  22. Tropea JE, Cherry S, Nallamsetty S, Bignon C, Waugh DS (2007) A generic method for the production of recombinant proteins in Escherichia coli using a dual His6-MBP affinity tag. Methods Mol Biol 363:1–19

    Article  CAS  PubMed  Google Scholar 

  23. Austin BP, Nallamsetty S, Waugh DS (2009) Hexahistidine-tagged maltose-binding protein as a fusion partner for the production of soluble recombinant proteins in Escherichia coli. Methods Mol Biol 498:157–172

    Article  CAS  PubMed  Google Scholar 

  24. Pattenden LK, Thomas WG (2008) Amylose affinity chromatography of maltose-binding protein: purification by both native and novel matrix-assisted dialysis refolding methods. Methods Mol Biol 421:169–189

    CAS  PubMed  Google Scholar 

  25. Nettleship JE, Brown J, Groves MR et al (2008) Methods for protein characterization by mass spectrometry, thermal shift (thermofluor) assay, and multiangle or static light scattering. Methods Mol Biol 426:299–318

    Article  CAS  PubMed  Google Scholar 

  26. Raynal B, Lenormand P, Baron B, Hoos S, England P (2014) Quality assessment and optimization of purified protein samples: why and how? Microb Cell Fact 13:180

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lebendiker M, Danieli T, de Marco A (2014) The Trip Adviser guide to the protein science world: a proposal to improve the awareness concerning the quality of recombinant proteins. BMC Res Notes 7:585

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sahin E, Roberts C (2012) Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. In: Voynov V, Caravella JA (eds) Therapeutic proteins: methods and protocols, vol 899, Methods in molecular biology. Humana, Totowa, NJ, pp 403–423

    Chapter  Google Scholar 

  29. Ye H (2006) Simultaneous determination of protein aggregation, degradation, and absolute molecular weight by size exclusion chromatography multiangle laser light scattering. Anal Biochem 356:76–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nina Vinograd from the Biological Chemistry Department of The Hebrew University of Jerusalem, for cloning, and expressing the fusion protein, and Hadar Amarteli from the Institute of Chemistry, Hebrew University of Jerusalem, for performing the analysis of the SEC-MALS results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Lebendiker Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lebendiker, M., Danieli, T. (2017). Purification of Proteins Fused to Maltose-Binding Protein. In: Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology, vol 1485. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6412-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6412-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6410-9

  • Online ISBN: 978-1-4939-6412-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics