Skip to main content

Circular Dichroism for the Analysis of Protein–DNA Interactions

  • Protocol
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1334))

Abstract

The aim of this chapter is to provide information on the practical aspects of circular dichroism (CD) and synchrotron radiation circular dichroism (SRCD) in protein–nucleic acids interaction solution studies. The chapter will describe the guidelines appropriate to designing experiments and conducting correct data interpretation, the use of both benchtop and synchrotron CD approaches is discussed and the advantages of SRCD outlined. Further information and a good general review of the field a can be found in Gray (Circular Dichroism of protein–nucleic acid interactions. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York. pp 469–500, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gray DM (1996) Circular dichroism of protein-nucleic acid interactions. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum, New York, pp 469–500

    Chapter  Google Scholar 

  2. Provencher SW, Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37

    Article  CAS  PubMed  Google Scholar 

  3. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  PubMed  Google Scholar 

  4. Van Stokkum IHM, Spoelder HJW, Bloemendal M, Van Grondelle R, Groen FCA (1990) Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal Biochem 191:110–118

    Article  PubMed  Google Scholar 

  5. Johnson BB, Dakl KS, Tinoco I Jr, Ivanov VI, Zhurkin VB (1981) Correlations between Deoxyribonucleic Acid Structural Parameters and Calculated Circular Dichroism Spectra. Biochemistry 20:73–78

    Article  CAS  PubMed  Google Scholar 

  6. Basham B, Schroth GP, Ho PS (1995) An A DNA triplecode: thermodynamic rules for predicting A and B DNA. Proc Natl Acad Sci U S A 92:6464–6468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Scarlett GP, Elgar SJ, Cary PD, Noble AM, Orford RL, Kneale GG, Guille MJ (2004) Intact RNA-binding domains are necessary for structure-specific DNA binding and transcription control by CBTF122 during Xenopus development. J Biol Chem 279(50):52447–52455

    Article  CAS  PubMed  Google Scholar 

  8. Gray DM, Hung SH, Johnson KH (1995) Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol 246:19–34

    Article  CAS  PubMed  Google Scholar 

  9. Hardin CC, Henderson E, Watson T, Prosser JK (1991) Monovalent cation induced structural transition in telomeric DNAs: G-DNA folding intermediates. Biochemistry 30:4460–4472

    Article  CAS  PubMed  Google Scholar 

  10. Siligardi G, Panaretou B, Meyer P, Singh S, Woolfson DN, Piper P, Pearl LH, Prodromou C (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50(cdc97). J Biol Chem 277:20151–20159

    Article  CAS  PubMed  Google Scholar 

  11. Siligardi G, Hussain R (2010) Applications of circular dichroism in encyclopedia of spectroscopy and spectrometry, vol. 1, 2nd ed. In: Lindon J, Tranter G, Koppenaal D (eds). Elsevier, Oxford. pp 9–14

    Google Scholar 

  12. Carpenter ML, Kneale GG (1991) Circular dichroism and fluorescence analysis of the interaction of Pf1 gene 5 protein with poly (dT). J Mol Biol 27:681–689

    Article  Google Scholar 

  13. Kansy JW, Cluck BA, Gray DM (1986) The binding of fd Gene 5 protein to polydeoxyribonucleotides: evidence from CD measurements for two binding modes. J Biomol Struct Dynam 3:1079–1110

    Article  CAS  Google Scholar 

  14. Culard F, Maurizot JC (1981) Lac repressor-lac operator interaction. Circ Dichroism Study Nucleic Acids Res 9:5175–5184

    Article  CAS  Google Scholar 

  15. Wartell RM, Adhya S (1988) DNA conformational change in Gal repressor-operator complex: involvement of central G-C base pair(s) of dyad symmetry. Nucleic Acids Res 16:11531–11541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Torigoe C, Kidokoro S, Takimoto M, Kyoyoku Y, Wada A (1991) Spectroscopic studies on lambda cro protein-DNA interactions. J Mol Biol 219:733–746

    Article  CAS  PubMed  Google Scholar 

  17. Conner F, Cary PD, Read C, Preston NS, Driscoll PC, Denny P et al (1994) DNA Binding and bending properties of the post-meiotically expressed Sry-related Protein Sox-5. Nucleic Acids Res 22:3339–3346

    Article  Google Scholar 

  18. Papapanagiotou I, Streeter SD, Cary PD, Kneale GG (2007) DNA structural deformations in the interaction of the controller protein C.Ahdl with its operator sequence. Nucleic Acids Res 35:2643–2650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Taylor IA, Davis KG, Watts D, Kneale GG (1994) DNA binding induces a major structural transition in a type I methyltransferase. EMBO J 13:5772–5778

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Pinhero P, Scarlett GP, Rodger A, Rodger PM, Murray A, Brown T, Newbury S, McClellan JA (2002) Structures of CUG repeats in RNA. J Biol Chem 277:35183–35190

    Article  Google Scholar 

  21. Calnan BJ, Biancalana S, Hudson D, Frankel AD (1991) Analysis of the arginine-rich peptides from the HIV TAT protein reveals unusual features of RNA-protein recognition. Genes Dev 51:201–210

    Article  Google Scholar 

  22. Tan R, Frankel AD (1995) Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci U S A 92:5282–5286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hussain R, Jávorfi T, Siligardi G (2012) Spectroscopic analysis: synchrotron radiation circular dichroism in comprehensive chirality, vol. 8. In: Carreira EM, Yamampto H (eds). Elsevier, Amsterdam. pp 438–448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry Scarlett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Scarlett, G., Siligardi, G., Kneale, G.G. (2015). Circular Dichroism for the Analysis of Protein–DNA Interactions. In: Leblanc, B., Rodrigue, S. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 1334. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2877-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2877-4_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2876-7

  • Online ISBN: 978-1-4939-2877-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics