Skip to main content

Culturing Drosophila Egg Chambers and Investigating Developmental Processes Through Live Imaging

  • Protocol
Drosophila Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1328))

Abstract

Drosophila oogenesis provides many examples of essential processes in development. A myriad of genetic tools combined with recent advances in culturing egg chambers ex vivo has revealed several surprising mechanisms that govern how this tissue develops, and which could not have been determined in fixed tissues. Here we describe a straightforward protocol for dissecting ovaries, culturing egg chambers, and observing egg development in real time by fluorescent microscopy. This technique is suitable for observation of early- or late-stage egg development, and can be adapted to study a variety of cellular, molecular, or developmental processes. Ongoing analysis of oogenesis in living egg chambers has tremendous potential for discovery of new developmental mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He L, Wang X, Montell DJ (2011) Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 21:612–619

    Article  CAS  PubMed  Google Scholar 

  2. Mavrakis M, Pourquie O, Lecuit T (2010) Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development 137:373–387

    Article  CAS  PubMed  Google Scholar 

  3. Parton RM, Valles AM, Dobbie IM et al (2010) Live cell imaging in Drosophila melanogaster. Cold Spring Harb Protoc 2010:pdb.top75

    Article  PubMed  Google Scholar 

  4. Hudson AM, Cooley L (2014) Methods for studying oogenesis. Methods 68:207–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bastock R, St. Johnston D (2008) Drosophila oogenesis. Curr Biol 18:R1082–R1087

    Article  CAS  PubMed  Google Scholar 

  6. Horne-Badovinac S, Bilder D (2005) Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev Dyn 232:559–574

    Article  CAS  PubMed  Google Scholar 

  7. Zhao T, Graham OS, Raposo A et al (2012) Growing microtubules push the oocyte nucleus to polarize the Drosophila dorsal-ventral axis. Science 336:999–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13:1159–1168

    Article  CAS  PubMed  Google Scholar 

  9. Weil TT, Forrest KM, Gavis ER (2006) Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev Cell 11:251–262

    Article  CAS  PubMed  Google Scholar 

  10. Bianco A, Poukkula M, Cliffe A et al (2007) Two distinct modes of guidance signalling during collective migration of border cells. Nature 448:362–365

    Article  CAS  PubMed  Google Scholar 

  11. Prasad M, Montell DJ (2007) Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev Cell 12:997–1005

    Article  CAS  PubMed  Google Scholar 

  12. Tekotte H, Tollervey D, Davis I (2007) Imaging the migrating border cell cluster in living Drosophila egg chambers. Dev Dyn 236:2818–2824

    Article  PubMed  Google Scholar 

  13. Cai D, Chen SC, Prasad M et al (2014) Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Majumder P, Aranjuez G, Amick J et al (2012) Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration. Curr Biol 22:363–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Starz-Gaiano M, Melani M, Wang X et al (2008) Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev Cell 14:726–738

    Article  CAS  PubMed  Google Scholar 

  16. Ramel D, Wang X, Laflamme C et al (2013) Rab11 regulates cell-cell communication during collective cell movements. Nat Cell Biol 15:317–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wang X, He L, Wu YI et al (2010) Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 12:591–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. He L, Wang X, Tang HL et al (2010) Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat Cell Biol 12:1133–1142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Spracklen AJ, Fagan TN, Lovander KE et al (2014) The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Dev Biol 393:209–226

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira T, Prudencio P, Martinho RG (2014) Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis. Dev Biol 394:277–291

    Article  CAS  PubMed  Google Scholar 

  21. Cox RT, Spradling AC (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–1590

    Article  CAS  PubMed  Google Scholar 

  22. McLean PF, Cooley L (2013) Protein equilibration through somatic ring canals in Drosophila. Science 340:1445–1447

    Article  CAS  PubMed  Google Scholar 

  23. Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331:1071–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dorman JB, James KE, Fraser SE et al (2004) bullwinkle is required for epithelial morphogenesis during Drosophila oogenesis. Dev Biol 267:320–341

    Article  CAS  PubMed  Google Scholar 

  25. Osterfield M, Du X, Schüpbach T et al (2013) Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 24:400–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lewellyn L, Cetera M, Horne-Badovinac S (2013) Misshapen decreases integrin levels to promote epithelial motility and planar polarity in Drosophila. J Cell Biol 200:721–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Weil TT, Parton RM, Davis I (2012) Preparing individual Drosophila egg chambers for live imaging. J Vis Exp (60): e3679

    Google Scholar 

  28. Prasad M, Jang AC, Starz-Gaiano M et al (2007) A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat Protoc 2:2467–2473

    Article  CAS  PubMed  Google Scholar 

  29. Pokrywka NJ (2013) Live imaging of GFP-labeled proteins in Drosophila oocytes. J Vis Exp (73): 50044

    Google Scholar 

  30. Morris LX, Spradling AC (2011) Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 138:2207–2215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Snapp EL, Iida T, Frescas D et al (2004) The fusome mediates intercellular endoplasmic reticulum connectivity in Drosophila ovarian cysts. Mol Biol Cell 15:4512–4521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Airoldi SJ, McLean PF, Shimada Y et al (2011) Intercellular protein movement in syncytial Drosophila follicle cells. J Cell Sci 124:4077–4086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Buszczak M, Paterno S, Lighthouse D et al (2007) The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175:1505–1531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Karpova N, Bobinnec Y, Fouix S et al (2006) Jupiter, a new Drosophila protein associated with microtubules. Cell Motil Cytoskeleton 63:301–312

    Article  CAS  PubMed  Google Scholar 

  35. Fichelson P, Moch C, Ivanovitch K et al (2009) Live-imaging of single stem cells within their niche reveals that a U3snoRNP component segregates asymmetrically and is required for self-renewal in Drosophila. Nat Cell Biol 11:685–693

    Article  CAS  PubMed  Google Scholar 

  36. Martinez-Campos M, Basto R, Baker J et al (2004) The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J Cell Biol 165:673–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Peel N, Stevens NR, Basto R et al (2007) Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr Biol 17:834–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Morin X, Daneman R, Zavortink M et al (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A 98:15050–15055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Conduit PT, Brunk K, Dobbelaere J et al (2010) Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM. Curr Biol 20:2178–2186

    Article  CAS  PubMed  Google Scholar 

  40. Minestrini G, Mathe E, Glover DM (2002) Domains of the Pavarotti kinesin-like protein that direct its subcellular distribution: effects of mislocalisation on the tubulin and actin cytoskeleton during Drosophila oogenesis. J Cell Sci 115(4):725–736

    CAS  PubMed  Google Scholar 

  41. Royou A, Field C, Sisson JC et al (2004) Reassessing the role and dynamics of nonmuscle myosin II during furrow formation in early Drosophila embryos. Mol Biol Cell 15(2):838–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shimada Y, Yonemura S, Ohkura H et al (2006) Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev Cell 10:209–222

    Article  CAS  PubMed  Google Scholar 

  43. Cliffe A, Poukkula M, Rørth P (2009) Culturing Drosophila egg chambers and imaging border cell migration. Nat Protoc 10:289

    Google Scholar 

  44. Datta SR, Vasconcelos ML, Ruta V et al (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452:473–477

    Article  CAS  PubMed  Google Scholar 

  45. Huang J, Zhou W, Dong W et al (2009) Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci 106(20):8284–8289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Davis I, Parton RM (2006) Selection of appropriate imaging equipment and methodology for live cell imaging in Drosophila. CSH Protoc doi:10.1101/pdb.ip21

  47. Stonko D, Manning L, Starz-Gaiano M, Peercy B (2015) A force-based biophysical model of collective cell migration in a three-dimensional, heterogeneous environment. PLoS One. 10(4):e0122799

    Google Scholar 

Download references

Acknowledgements

This work was funded in part by a Department of Education Grant, Graduate Assistance in the Areas of National Need (GAANN) training fellowship (P200A120017), and by an NIGMS Initiative for Maximizing Student Development Grant (2 R25-GM55036), IMSD Meyerhoff Graduate Fellowship, to L.M. and a National Science Foundation CAREER Award (IOS-1054422) to M.S.G. We appreciate helpful comments on the manuscript from Dr. N. Sanchez-Alberola, G. Wunderlin, E. Desai, and D. DiMercurio, and we thank Dr. J. McDonald and Dr. A.C.C. Jang for sharing culturing information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Starz-Gaiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Manning, L., Starz-Gaiano, M. (2015). Culturing Drosophila Egg Chambers and Investigating Developmental Processes Through Live Imaging. In: Bratu, D., McNeil, G. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 1328. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2851-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2851-4_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2850-7

  • Online ISBN: 978-1-4939-2851-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics