Skip to main content

Cell-SELEX: In Vitro Selection of Synthetic Small Specific Ligands

  • Protocol
Small Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1296))

Abstract

Systematic Evolution of Ligands by Exponential Enrichment (SELEX) is an in vitro process enabling selection of nucleic acid molecules binding to target ligands with high binding affinity and specificity. The selection process involves several rounds of two successive steps: (1) binding of the oligonucleotides to the target under stringent conditions and (2) amplification of the target-bound nucleic acids by polymerase chain reaction. Using this strategy, RNA or DNA aptamers are selected upon recognition and binding to specific surface structures of the target. Aptamers generated during the final rounds of selection can be notably used in applications dedicated to diagnosis of diseases or therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  2. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  3. Patel DJ (1997) Structural analysis of nucleic acid aptamers. Curr Opin Chem Biol 1:32–46

    Article  CAS  PubMed  Google Scholar 

  4. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    Article  CAS  PubMed  Google Scholar 

  5. Patel DJ, Suri AK (2000) Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J Biotechnol 74:39–60

    CAS  PubMed  Google Scholar 

  6. Schneider DJ, Feigon J, Hostomsky Z et al (1995) High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry 34:9599–9610

    Article  CAS  PubMed  Google Scholar 

  7. Mosing RK, Mendonsa SD, Bowser MT (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem 77:6107–6112

    Article  CAS  PubMed  Google Scholar 

  8. Chen F, Hu Y, Li D et al (2009) CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One 4:e8142

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kawakami J, Imanaka H, Yokota Y et al (2000) In vitro selection of aptamers that act with Zn2+. J Inorg Biochem 82:197–206

    Article  CAS  PubMed  Google Scholar 

  10. Mann D, Reinemann C, Stoltenburg R et al (2005) In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun 338:1928–1934

    Article  CAS  PubMed  Google Scholar 

  11. Lauhon CT, Szostak JW (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors. J Am Chem Soc 117:1246–1257

    Article  CAS  PubMed  Google Scholar 

  12. Holland CA, Henry AT, Whinna HC et al (2000) Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Lett 484:87–91

    Article  CAS  PubMed  Google Scholar 

  13. Bruno JG, Carrillo MP, Phillips T et al (2008) Competitive FRET-aptamer-based detection of methylphosphonic acid, a common nerve agent metabolite. J Fluoresc 18:867–876

    Article  CAS  PubMed  Google Scholar 

  14. Ruckman J, Green LS, Beeson J et al (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    Article  CAS  PubMed  Google Scholar 

  15. White R, Rusconi C, Scardino E et al (2001) Generation of species cross-reactive aptamers using “toggle” SELEX. Mol Ther 4:567–573

    Article  CAS  PubMed  Google Scholar 

  16. Savla R, Taratula O, Garbuzenko O et al (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153:16–22

    Article  CAS  PubMed  Google Scholar 

  17. Tang Z, Parekh P, Turner P et al (2009) Generating aptamers for recognition of virus-infected cells. Clin Chem 55:813–822

    Article  CAS  PubMed  Google Scholar 

  18. Hamula CL, Le XC, Li XF (2011) DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal Chem 83:3640–3647

    Article  CAS  PubMed  Google Scholar 

  19. Kolesnikova O, Kazakova H, Comte C et al (2010) Selection of RNA aptamers imported into yeast and human mitochondria. RNA 16:926–941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Stoltenburg R, Reinemann C, Strehlitz B (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383:83–91

    Article  CAS  PubMed  Google Scholar 

  21. Bianchini M, Radrizzani M, Brocardo MG et al (2001) Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. J Immunol Methods 252:191–197

    Article  CAS  PubMed  Google Scholar 

  22. Fitzwater T, Polisky B (1996) A SELEX primer. Methods Enzymol 267:275–301

    Article  CAS  PubMed  Google Scholar 

  23. Schutze T, Wilhelm B, Greiner N et al (2011) Probing the SELEX process with next-generation sequencing. PLoS One 6:e29604

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743

    Article  CAS  PubMed  Google Scholar 

  26. Tucker CE, Chen LS, Judkins MB et al (1999) Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J Chromatogr B Biomed Sci Appl 732:203–212

    Article  CAS  PubMed  Google Scholar 

  27. Ng EW, Shima DT, Calias P et al (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    Article  CAS  PubMed  Google Scholar 

  28. Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  CAS  PubMed  Google Scholar 

  29. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  30. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Crooks GE, Hon G, Chandonia JM et al (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hüttenhofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dickinson, H., Lukasser, M., Mayer, G., Hüttenhofer, A. (2015). Cell-SELEX: In Vitro Selection of Synthetic Small Specific Ligands. In: Rederstorff, M. (eds) Small Non-Coding RNAs. Methods in Molecular Biology, vol 1296. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2547-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2547-6_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2546-9

  • Online ISBN: 978-1-4939-2547-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics