Skip to main content

Efficient and Selective Knockdown of Small Non-Coding RNAs

  • Protocol
Small Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1296))

  • 3768 Accesses

Abstract

Small non-coding RNAs (ncRNAs), less than 200 nucleotides in length, play important roles in various biological processes, such as pre-mRNA splicing, pre-rRNA processing and modification, and gene expression regulation. However, characterization of small ncRNAs remains difficult mainly due to methodological obstacles in selective reduction of these RNAs. Here we describe an approach to deplete small ncRNAs, in principle any types of RNAs, using second generation antisense oligonucleotide-directed RNase H cleavage pathway in human cells. This protocol includes oligonucleotide design, transfection, RNA preparation, and target RNA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10:833–844

    Article  CAS  PubMed  Google Scholar 

  2. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec No 1):R17–R29

    Article  CAS  PubMed  Google Scholar 

  3. Liang XH, Vickers TA, Crooke ST (2012) Antisense-mediated reduction of eukaryotic noncoding RNAs. In: Erdmann A, Barciszewski J (eds) From nucleic acid sequences to molecular medicine. Springer, New York, NY, pp p191–p214

    Chapter  Google Scholar 

  4. Chen LL, Carmichael GG (2010) Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 22:357–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bachellerie JP, Cavaille J, Huttenhofer A (2002) The expanding snoRNA world. Biochimie 84:775–790

    Article  CAS  PubMed  Google Scholar 

  6. Maxwell ES, Fournier MJ (1995) The small nucleolar RNAs. Annu Rev Biochem 64:897–934

    Article  CAS  PubMed  Google Scholar 

  7. Will CL, Luhrmann R (2001) Spliceosomal U snRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290–301

    Article  CAS  PubMed  Google Scholar 

  8. Liang XH, Vickers TA, Guo S, Crooke ST (2011) Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice. Nucleic Acids Res 39(e13):1–17

    Google Scholar 

  9. Ploner A, Ploner C, Lukasser M, Niederegger H, Huttenhofer A (2009) Methodological obstacles in knocking down small noncoding RNAs. RNA 15:1797–1804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Toth PP (2013) Emerging LDL therapies: mipomersen-antisense oligonucleotide therapy in the management of hypercholesterolemia. J Clin Lipidol 7:S6–S10

    Article  PubMed  Google Scholar 

  11. Crooke ST, Vickers T, Lima W, Wu H-J (2006) Mechanisms of antisense drug action, an introduction. In: Crooke ST (ed) Antisense drug technology - principles, strategies, and application. CRC Press, Boca Raton, FL, pp 3–46

    Google Scholar 

  12. Swayze EE, Bhat B (2006) The medicinal chemistry of oligonucleotides. In: Crooke ST (ed) Antisense drug technology - principles, strategies, and applications. CRC Press, Boca Raton, FL, pp 143–182

    Google Scholar 

  13. Liang XH, Hart CE, Crooke ST (2013) Transfection of siRNAs can alter miRNA levels and trigger non-specific protein degradation in mammalian cells. Biochim Biophys Acta 1829:455–468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was funded by an internal funding from ISIS Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hai Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liang, XH., Shen, W., Crooke, S.T. (2015). Efficient and Selective Knockdown of Small Non-Coding RNAs. In: Rederstorff, M. (eds) Small Non-Coding RNAs. Methods in Molecular Biology, vol 1296. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2547-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2547-6_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2546-9

  • Online ISBN: 978-1-4939-2547-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics