Skip to main content

Investigation of Genomic Methylation Status Using Methylation-Specific and Bisulfite Sequencing Polymerase Chain Reaction

  • Protocol
Chromatin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1288))

Abstract

Epigenetic modification plays a central role in the regulation of gene expression and therefore in the development of disease states. In particular, genomic methylation of cytosines within CpG dinucleotides is crucial to development, gene silencing, and chromosome inactivation. Importantly, aberrant methylation profiles of various genes are associated with cancer as well as autoimmune disease, psychiatric and neurodegenerative disorders, diabetes, and heart disease. Various methods are available for the detection and quantification of methylation in a given sample. Most of these methods rely upon bisulfite conversion of DNA, which converts unmethylated cytosines to uracil, while methylated cytosines remain as cytosines. Methylation-specific amplification of DNA can be used to detect methylation at one or more (typically up to about 4) CpG sites by using primers specific to either methylated or unmethylated DNA. Alternatively, amplification of both methylated and unmethylated DNA followed by sequencing can be used to detect methylation status at multiple CpG sites. The following chapter provides protocols for bisulfite conversion of DNA, methylation-specific PCR and bisulfite sequencing PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park SY, Kim BH, Kim JH, Cho NY, Choi M, Yu EJ, Lee S, Kang GH (2007) Methylation profiles of CpG island loci in major types of human cancers. J Korean Med Sci 22(2):311–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ducasse M, Brown MA (2006) Epigenetic aberrations and cancer. Mol Cancer 5:60

    Article  PubMed Central  PubMed  Google Scholar 

  3. Moss TJ, Wallrath LL (2007) Connections between epigenetic gene silencing and human disease. Mutat Res 618(1–2):163–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99(6):3740–3745, 122594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103(5):1412–1417, 1345710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Wang Y, Leung FC (2004) An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20(7):1170–1177

    Article  CAS  PubMed  Google Scholar 

  7. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97

    Article  CAS  PubMed  Google Scholar 

  8. Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11(11):1068–1075

    Article  CAS  PubMed  Google Scholar 

  9. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219, 2377394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP (2009) A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci U S A 106(3):671–678, 2621253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162

    CAS  PubMed  Google Scholar 

  13. Ai S, Shen L, Guo J, Feng X, Tang B (2012) DNA methylation as a biomarker for neuropsychiatric diseases. Int J Neurosci 122(4):165–176

    Article  CAS  PubMed  Google Scholar 

  14. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15(21):3132–3145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J, Goldschmidt-Clermont PJ, Issa JP (2007) Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta 1772(1):72–80

    Article  CAS  PubMed  Google Scholar 

  16. Maier S, Olek A (2002) Diabetes: a candidate disease for efficient DNA methylation profiling. J Nutr 132(8 Suppl):2440S–2443S

    CAS  PubMed  Google Scholar 

  17. Munson K, Clark J, Lamparska-Kupsik K, Smith SS (2007) Recovery of bisulfite-converted genomic sequences in the methylation-sensitive QPCR. Nucleic Acids Res 35(9):2893–2903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Brena RM, Huang TH, Plass C (2006) Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med 84(5):365–377

    Article  CAS  PubMed  Google Scholar 

  20. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11(3):191–203

    Article  CAS  PubMed  Google Scholar 

  21. Shapiro R, Braverman B, Louis JB, Servis RE (1973) Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite. J Biol Chem 248(11):4060–4064

    CAS  PubMed  Google Scholar 

  22. Pattyn F, Hoebeeck J, Robbrecht P, Michels E, De Paepe A, Bottu G, Coornaert D, Herzog R, Speleman F, Vandesompele J (2006) methBLAST and methPrimerDB: web-tools for PCR based methylation analysis. BMC Bioinformatics 7:496

    Article  PubMed Central  PubMed  Google Scholar 

  23. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431

    Article  CAS  PubMed  Google Scholar 

  24. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20(15):2471–2472

    Article  CAS  PubMed  Google Scholar 

  25. Tusnady GE, Simon I, Varadi A, Aranyi T (2005) BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res 33(1):e9

    Article  PubMed Central  PubMed  Google Scholar 

  26. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93(18):9821–9826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie A. Carless Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Carless, M.A. (2015). Investigation of Genomic Methylation Status Using Methylation-Specific and Bisulfite Sequencing Polymerase Chain Reaction. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 1288. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2474-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2474-5_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2473-8

  • Online ISBN: 978-1-4939-2474-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics