Skip to main content

Robotic High-Throughput Purification of Affinity-Tagged Recombinant Proteins

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

Abstract

Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634

    Article  CAS  PubMed  Google Scholar 

  2. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    Article  CAS  PubMed  Google Scholar 

  3. Janknecht R, de Martynoff G, Lou J, Hipskind RA, Nordheim A, Stunnenberg HG (1991) Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc Natl Acad Sci U S A 88:8972–8976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chaga GS (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334

    Article  CAS  PubMed  Google Scholar 

  5. Hefti MH, Vugt-Van V, der Toorn CJ, Dixon R, Vervoort J (2001) A novel purification method for histidine-tagged proteins containing a thrombin cleavage site. Anal Biochem 295:180–185

    Article  CAS  PubMed  Google Scholar 

  6. Wiesler SC, Weinzierl RO (2011) The linker domain of basal transcription factor TFIIB controls distinct recruitment and transcription stimulation functions. Nucleic Acids Res 39:464–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Nottebaum S, Tan L, Trzaska D, Carney HC, Weinzierl RO (2008) The RNA polymerase factory: a robotic in vitro assembly platform for high-throughput production of recombinant protein complexes. Nucleic Acids Res 36:245–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tan L, Wiesler S, Trzaska D, Carney HC, Weinzierl RO (2008) Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J Biol 7:40

    Article  PubMed Central  PubMed  Google Scholar 

  9. Weinzierl RO (2013) The RNA polymerase factory and archaeal transcription. Chem Rev 113:8350–8376

    Article  CAS  PubMed  Google Scholar 

  10. Frenzel A, Bergemann C, Köhl G, Reinard T (2003) Novel purification system for 6xHis-tagged proteins by magnetic affinity separation. J Chromatogr B Analyt Technol Biomed Life Sci 793:325–329

    Article  CAS  PubMed  Google Scholar 

  11. Wiesler SC, Weinzierl RO (2012) High-throughput purification of affinity-tagged recombinant proteins. J Vis Exp 66:e4110

    PubMed  Google Scholar 

  12. Camara B, Liu M, Reynolds J, Shadrin A, Liu B, Kwok K, Simpson P, Weinzierl RO, Severinov K, Cota E, Matthews S, Wigneshweraraj SR (2010) T7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site. Proc Natl Acad Sci U S A 107:2247–2252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. J. Weinzierl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wiesler, S.C., Weinzierl, R.O.J. (2015). Robotic High-Throughput Purification of Affinity-Tagged Recombinant Proteins. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics