Skip to main content

Structural Basis of Protein-Protein Interactions

  • Protocol
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1278))

Abstract

Regulated interactions between proteins govern signaling pathways within and between cells. Structural studies on protein complexes formed reversibly and/or transiently illustrate the remarkable diversity of interactions, both in terms of interfacial size and nature. In recent years, “domain–peptide” interactions have gained much greater recognition and may be viewed as both pre-translational and posttranslational-dependent functional switches. Our understanding of the multistep regulation of auto-inhibited multidomain proteins has also grown. Their activity may be understood as the “combinatorial” output of multiple input signals, including phosphorylation, location, and mechanical force. The prospects for bridging the gap between the new “systems biology” data and the traditional “reductionist” data are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schreiber G, Keating AE (2011) Protein binding specificity versus promiscuity. Curr Opin Struct Biol 21:50–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Levy ED, De S, Teichmann SA (2012) Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. Proc Natl Acad Sci U S A 109:20461–20466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Finn RD, Tate J, Mistry J et al (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Mosca R, Ceol A, Stein A et al (2014) 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 42:D374–D379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Stumpf MP, Thorne T, de Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105:6959–6964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Venkatesan K, Rual JF, Vazquez A et al (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Voorhees RM, Weixlbaumer A, Loakes D et al (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 16:528–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Grigorieff N, Harrison SC (2011) Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr Opin Struct Biol 21:265–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Almo SC, Garforth SJ, Hillerich BS et al (2013) Protein production from the structural genomics perspective: achievements and future needs. Curr Opin Struct Biol 23:335–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cuff AL, Sillitoe I, Lewis T et al (2011) Extending CATH: increasing coverage of the protein structure universe and linking structure with function. Nucleic Acids Res 39:D420–D426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kundrotas PJ, Vakser IA, Janin J (2013) Structural templates for modeling homodimers. Protein Sci 22:1655–1663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kundrotas PJ, Zhu Z, Janin J et al (2012) Templates are available to model nearly all complexes of structurally characterized proteins. Proc Natl Acad Sci U S A 109:9438–9441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zhang QC, Petrey D, Norel R et al (2010) Protein interface conservation across structure space. Proc Natl Acad Sci U S A 107:10896–10901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gao M, Skolnick J (2010) Structural space of protein-protein interfaces is degenerate, close to complete, and highly connected. Proc Natl Acad Sci U S A 107:22517–22522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zhang QC, Petrey D, Garzon JI et al (2013) PrePPI: a structure-informed database of protein–protein interactions. Nucleic Acids Res 41:D828–D833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Aloy P, Ceulemans H, Stark A et al (2003) The relationship between sequence and interaction divergence in proteins. J Mol Biol 332:989–998

    Article  CAS  PubMed  Google Scholar 

  17. Janin J (2013) The targets of CAPRI rounds 20–27. Proteins 81:2075–2081

    Article  CAS  PubMed  Google Scholar 

  18. Janin J, Rodier F, Chakrabarti P et al (2007) Macromolecular recognition in the Protein Data Bank. Acta Crystallogr D Biol Crystallogr 63:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Janin J (2010) The targets of CAPRI Rounds 13–19. Proteins 78:3067–3072

    Article  CAS  PubMed  Google Scholar 

  20. Wass MN, David A, Sternberg MJ (2011) Challenges for the prediction of macromolecular interactions. Curr Opin Struct Biol 21:382–390

    Article  CAS  PubMed  Google Scholar 

  21. Lander GC, Saibil HR, Nogales E (2012) Go hybrid: EM, crystallography, and beyond. Curr Opin Struct Biol 22:627–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rouiller I, Xu XP, Amann KJ et al (2008) The structural basis of actin filament branching by the Arp2/3 complex. J Cell Biol 180:887–895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rambo RP, Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42:415–441

    Article  CAS  PubMed  Google Scholar 

  24. Stein A, Aloy P (2010) Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures. PLoS Comput Biol 6:e1000789

    Article  PubMed Central  PubMed  Google Scholar 

  25. Seong J, Tajik A, Sun J et al (2013) Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins. Proc Natl Acad Sci U S A 110:19372–19377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hunter T (2012) Why nature chose phosphate to modify proteins. Philos Trans R Soc Lond B Biol Sci 367:2513–2516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wolfenson H, Lavelin I, Geiger B (2013) Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell 24:447–458

    Article  CAS  PubMed  Google Scholar 

  28. Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Dice JF (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15:305–309

    Article  CAS  PubMed  Google Scholar 

  30. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  CAS  PubMed  Google Scholar 

  31. Tourigny DS, Fernandez IS, Kelley AC et al (2013) Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340:1235490

    Article  PubMed  Google Scholar 

  32. Brown CJ, Johnson AK, Dunker AK et al (2011) Evolution and disorder. Curr Opin Struct Biol 21:441–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Dunker AK, Silman I, Uversky VN et al (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  CAS  PubMed  Google Scholar 

  34. Janin J, Sternberg MJ (2013) Protein flexibility, not disorder, is intrinsic to molecular recognition. F1000 Biol Rep 5:2

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lo CL, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–2198

    Article  Google Scholar 

  36. Wodak SJ, Janin J (2003) Structural basis of macromolecular recognition. Adv Protein Chem 61:9–73

    Article  CAS  Google Scholar 

  37. Levy ED, Teichmann S (2013) Structural, evolutionary, and assembly principles of protein oligomerization. Prog Mol Biol Transl Sci 117:25–51

    Article  CAS  PubMed  Google Scholar 

  38. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Huang Y, Swaminathan CP et al (2005) Magnitude of the hydrophobic effect at central versus peripheral sites in protein-protein interfaces. Structure 13:297–307

    Article  CAS  PubMed  Google Scholar 

  40. Ofran Y, Rost B (2003) Analysing six types of protein-protein interfaces. J Mol Biol 325:377–387

    Article  CAS  PubMed  Google Scholar 

  41. Levy ED (2010) A simple definition of structural regions in proteins and its use in analyzing interface evolution. J Mol Biol 403:660–670

    Article  CAS  PubMed  Google Scholar 

  42. Dey S, Pal A, Chakrabarti P et al (2010) The subunit interfaces of weakly associated homodimeric proteins. J Mol Biol 398:146–160

    Article  CAS  PubMed  Google Scholar 

  43. Glaser F, Steinberg DM, Vakser IA et al (2001) Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 43:89–102

    Article  CAS  PubMed  Google Scholar 

  44. Headd JJ, Ban YE, Brown P et al (2007) Protein–protein interfaces: properties, preferences, and projections. J Proteome Res 6:2576–2586

    Article  CAS  PubMed  Google Scholar 

  45. Keskin O, Ma B, Nussinov R (2005) Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345:1281–1294

    Article  CAS  PubMed  Google Scholar 

  46. Crowley PB, Golovin A (2005) Cation-Π interactions in protein-protein interfaces. Proteins 59:231–239

    Article  CAS  PubMed  Google Scholar 

  47. Chen P, Li J, Wong L et al (2013) Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences. Proteins 81:1351–1362

    Article  CAS  PubMed  Google Scholar 

  48. Hwang H, Vreven T, Janin J et al (2010) Protein-protein docking benchmark version 4.0. Proteins 78:3111–3114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  CAS  PubMed  Google Scholar 

  50. Lee JO, Rieu P, Arnaout MA et al (1995) Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638

    Article  CAS  PubMed  Google Scholar 

  51. Emsley J, Knight CG, Farndale RW et al (2000) Structural basis of collagen recognition by integrin α2β1. Cell 101:47–56

    Article  CAS  PubMed  Google Scholar 

  52. Hogg N, Harvey J, Cabanas C et al (1993) Control of leukocyte integrin activation. Am Rev Respir Dis 148:S55–S59

    Article  CAS  PubMed  Google Scholar 

  53. Shimaoka M, Xiao T, Liu JH et al (2003) Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112:99–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Kuhlmann UC, Pommer AJ, Moore GR et al (2000) Specificity in protein–protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. J Mol Biol 301:1163–1178

    Article  CAS  PubMed  Google Scholar 

  55. Xiong JP, Stehle T, Zhang R et al (2002) Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155

    Article  CAS  PubMed  Google Scholar 

  56. Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Huizinga EG, Tsuji S, Romijn RA et al (2002) Structures of glycoprotein Ibα and its complex with von Willebrand factor A1 domain. Science 297:1176–1179

    Article  CAS  PubMed  Google Scholar 

  58. Brondijk TH, Bihan D, Farndale RW et al (2012) Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex. Proc Natl Acad Sci U S A 109:5253–5258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Weatheritt RJ, Gibson TJ (2012) Linear motifs: lost in (pre)translation. Trends Biochem Sci 37:333–341

    Article  CAS  PubMed  Google Scholar 

  60. Weatheritt RJ, Davey NE, Gibson TJ (2012) Linear motifs confer functional diversity onto splice variants. Nucleic Acids Res 40:7123–7131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Yaffe MB, Rittinger K, Volinia S et al (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91:961–971

    Article  CAS  PubMed  Google Scholar 

  62. Lee JO, Russo AA, Pavletich NP (1998) Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391:859–865

    Article  CAS  PubMed  Google Scholar 

  63. Eck MJ, Shoelson SE, Harrison SC (1993) Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362:87–91

    Article  CAS  PubMed  Google Scholar 

  64. Doyle DA, Lee A, Lewis J et al (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85:1067–1076

    Article  CAS  PubMed  Google Scholar 

  65. Hayashi I, Vuori K, Liddington RC (2002) The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nat Struct Biol 9:101–106

    Article  CAS  PubMed  Google Scholar 

  66. Pokutta S, Weis WI (2000) Structure of the dimerization and beta-catenin-binding region of alpha-catenin. Mol Cell 5:533–543

    Article  CAS  PubMed  Google Scholar 

  67. Musacchio A, Saraste M, Wilmanns M (1994) High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nat Struct Biol 1:546–551

    Article  CAS  PubMed  Google Scholar 

  68. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Weatheritt RJ, Jehl P, Dinkel H et al (2012) iELM – a web server to explore short linear motif-mediated interactions. Nucleic Acids Res 40:W364–W369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Van Roey K, Gibson TJ, Davey NE (2012) Motif switches: decision-making in cell regulation. Curr Opin Struct Biol 22:378–385

    Article  PubMed  Google Scholar 

  71. Harrison SC (1996) Peptide-surface association: the case of PDZ and PTB domains. Cell 86:341–343

    Article  CAS  PubMed  Google Scholar 

  72. Van Roey K, Dinkel H, Weatheritt RJ et al (2013) The switches ELM resource: a compendium of conditional regulatory interaction interfaces. Sci Signal 6:rs7

    Article  PubMed  Google Scholar 

  73. Stein A, Aloy P (2008) Contextual specificity in peptide-mediated protein interactions. PLoS One 3:e2524

    Article  PubMed Central  PubMed  Google Scholar 

  74. Garcia-Alvarez B, de Pereda JM, Calderwood DA et al (2003) Structural determinants of integrin recognition by talin. Mol Cell 11:49–58

    Article  CAS  PubMed  Google Scholar 

  75. Cowan KJ, Law DA, Phillips DR (2000) Identification of Shc as the primary protein binding to the tyrosine-phosphorylated β3 subunit of αIIbβ3 during outside-in integrin platelet signaling. J Biol Chem 275:36423–36429

    Article  CAS  PubMed  Google Scholar 

  76. Di Paolo G, Pellegrini L, Letinic K et al (2002) Recruitment and regulation of phosphatidylinositol phosphate kinase type 1-γ by the FERM domain of talin. Nature 420:85–89

    Article  PubMed  Google Scholar 

  77. Schill NJ, Anderson RA (2009) Two novel phosphatidylinositol-4-phosphate 5-kinase type Igamma splice variants expressed in human cells display distinctive cellular targeting. Biochem J 422:473–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Reyes A, Anders S, Weatheritt RJ et al (2013) Drift and conservation of differential exon usage across tissues in primate species. Proc Natl Acad Sci U S A 110:15377–15382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Hui S, Xing X, Bader GD (2013) Predicting PDZ domain mediated protein interactions from structure. BMC Bioinformatics 14:27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Bakolitsa C, Cohen DM, Bankston LA et al (2004) Structural basis for vinculin activation at sites of cell adhesion. Nature 430:583–586

    Article  CAS  PubMed  Google Scholar 

  81. Balla T (2005) Inositol-lipid binding motifs: signal integrators through protein-lipid and protein–protein interactions. J Cell Sci 118:2093–2104

    Article  CAS  PubMed  Google Scholar 

  82. Carlton JG, Cullen PJ (2005) Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15:540–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Schiller HB, Fassler R (2013) Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 14:509–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Lietha D, Cai X, Ceccarelli DF et al (2007) Structural basis for the autoinhibition of focal adhesion kinase. Cell 129:1177–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Arold ST (2011) How focal adhesion kinase achieves regulation by linking ligand binding, localization and action. Curr Opin Struct Biol 21:808–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Toutant M, Costa A, Studler JM et al (2002) Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol Cell Biol 22:7731–7743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Margadant F, Chew LL, Hu X et al (2011) Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol 9:e1001223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Hu K, Ji L, Applegate KT et al (2007) Differential transmission of actin motion within focal adhesions. Science 315:111–115

    Article  CAS  PubMed  Google Scholar 

  89. Seifert C, Grater F (2013) Protein mechanics: how force regulates molecular function. Biochim Biophys Acta 1830:4762–4768

    Article  CAS  PubMed  Google Scholar 

  90. Yahav T, Maimon T, Grossman E et al (2011) Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Curr Opin Struct Biol 21:670–677

    Article  CAS  PubMed  Google Scholar 

  91. Zhang P (2013) Correlative cryo-electron tomography and optical microscopy of cells. Curr Opin Struct Biol 23:763–770

    Article  CAS  PubMed  Google Scholar 

  92. Baker ML, Hryc CF, Zhang Q et al (2013) Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling. Proc Natl Acad Sci U S A 110:12301–12306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Liddington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liddington, R.C. (2015). Structural Basis of Protein-Protein Interactions. In: Meyerkord, C., Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 1278. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2425-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2425-7_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2424-0

  • Online ISBN: 978-1-4939-2425-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics