Skip to main content

Methods to Assess the Activation of the Alternative (Noncanonical) NF-κB Pathway by Non-death TNF Receptors

  • Protocol
  • First Online:
NF-kappa B

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1280))

Abstract

The alternative or noncanonical NF-κB pathway regulates the generation of p52-containing NF-κB dimers (e.g., p52/RelB) through a partial degradation (called processing) of the precursor p100 into p52. This pathway is activated by a subset of non-death TNF receptor members, which ultimately activate two kinases: NIK (NF-κB-Inducing Kinase) and IKKα (Inhibitor of κB Kinase alpha). These kinases create a phosphodegron for the E3 ligase SCF-β-TrCP that covalently binds K48-linked polyubiquitin chain onto p100 prior to its proteasomal processing. The resulting p52-containing complexes translocate into the nucleus to activate target genes involved in secondary lymphoid organ development, B cell survival or in osteoclastogenesis.

We describe in this chapter straightforward methods to monitor the activation of the alternative NF-κB pathway. These methods uncover cytosolic and nuclear biochemical modifications of key proteins of the alternative NF-κB pathway required prior to the transcription of NF-κB target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  2. Kanarek N, Ben-Neriah Y (2012) Regulation of NF-kappaB by ubiquitination and degradation of the IkappaBs. Immunol Rev 246(1):77–94

    Article  PubMed  Google Scholar 

  3. Dejardin E (2006) The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 72(9):1161–1179

    Article  CAS  PubMed  Google Scholar 

  4. Xiao G, Harhaj EW, Sun SC (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7(2):401–409

    Article  CAS  PubMed  Google Scholar 

  5. Claudio E et al (2002) BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol 3(10):958–965

    Article  CAS  PubMed  Google Scholar 

  6. Coope HJ et al (2002) CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 21(20):5375–5385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dejardin E et al (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17(4):525–535

    Article  CAS  PubMed  Google Scholar 

  8. Ganeff C et al (2011) Induction of the alternative NF-{kappa}B pathway by lymphotoxin {alpha}{beta} (LT{alpha}{beta}) relies on internalization of LT{beta} receptor. Mol Cell Biol 31(21):4319–4334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Munroe ME, Bishop GA (2004) Role of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) in distinct and overlapping CD40 and TNF receptor 2/CD120b-mediated B lymphocyte activation. J Biol Chem 279(51):53222–53231

    Article  CAS  PubMed  Google Scholar 

  10. Novack DV et al (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198(5):771–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Saitoh T et al (2003) TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 278(38):36005–36012

    Article  CAS  PubMed  Google Scholar 

  12. Vallabhapurapu S et al (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9(12):1364–1370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zarnegar BJ et al (2008) Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 9(12):1371–1378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jin X et al (2010) An atypical E3 ligase zinc finger protein 91 stabilizes and activates NF-kappaB-inducing kinase via Lys63-linked ubiquitination. J Biol Chem 285(40):30539–30547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. de Leon-Boenig G et al (2012) The crystal structure of the catalytic domain of the NF-kappaB inducing kinase reveals a narrow but flexible active site. Structure 20(10):1704–1714

    Article  PubMed  Google Scholar 

  16. Liu J et al (2012) Structure of the nuclear factor kappaB-inducing kinase (NIK) kinase domain reveals a constitutively active conformation. J Biol Chem 287(33):27326–27334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ling L, Cao Z, Goeddel DV (1998) NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 95(7):3792–3797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Xiao G, Fong A, Sun SC (2004) Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 279(29):30099–30105

    Article  CAS  PubMed  Google Scholar 

  19. Amir RE et al (2004) Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase. Oncogene 23(14):2540–2547

    Article  CAS  PubMed  Google Scholar 

  20. Fagerlund R et al (2008) NF-kappaB p52, RelB and c-Rel are transported into the nucleus via a subset of importin alpha molecules. Cell Signal 20(8):1442–1451

    Article  CAS  PubMed  Google Scholar 

  21. Chen FE et al (1998) Crystal structure of p50/p50 heterodimer of transcription factor NF-κB bound to DNA. Nature 391:410–413

    Article  CAS  PubMed  Google Scholar 

  22. Britanova L, Makeev V, Kuprash D (2008) In vitro selection of optimal RelB/p52 DNA-binding motifs. Biochem Biophys Res Commun 365(3):583–588

    Article  CAS  PubMed  Google Scholar 

  23. Fusco AJ et al (2009) NF-kappaB p52:RelB heterodimer recognizes two classes of kappaB sites with two distinct modes. EMBO Rep 10(2):152–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Siggers T et al (2012) Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-kappaB family DNA binding. Nat Immunol 13(1):95–102

    Article  CAS  Google Scholar 

  25. Wang VY et al (2012) The transcriptional specificity of NF-kappaB dimers is coded within the kappaB DNA response elements. Cell Rep 2(4):824–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Varfolomeev E et al (2012) Cellular inhibitors of apoptosis are global regulators of NF-kappaB and MAPK activation by members of the TNF family of receptors. Sci Signal 5(216):ra22

    Article  PubMed  Google Scholar 

  27. Bertrand MJ et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30(6):689–700

    Article  CAS  PubMed  Google Scholar 

  28. Varfolomeev E et al (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131(4):669–681

    Article  CAS  PubMed  Google Scholar 

  29. Vince JE et al (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131(4):682–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Centre Anticancéreux (CAC) from the University of Liège (Belgium), the Fédération belge Contre le Cancer (FCC) (Belgium), and the Interuniversity Attraction Poles (IAP7/32) (Belgium) for their funding. C.R. is supported by a fellowship from the Télévie (Belgium), and E.D. is a Research Associate at the FNRS (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Dejardin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Remouchamps, C., Dejardin, E. (2015). Methods to Assess the Activation of the Alternative (Noncanonical) NF-κB Pathway by Non-death TNF Receptors. In: May, M. (eds) NF-kappa B. Methods in Molecular Biology, vol 1280. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2422-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2422-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2421-9

  • Online ISBN: 978-1-4939-2422-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics