Skip to main content

Generation of a Proteolytic Signal: E3/E2-Mediated Polyubiquitination of IκBα

  • Protocol
  • First Online:
NF-kappa B

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1280))

Abstract

A key regulatory node in NF-κB signaling is the removal of the IκBα inhibitor, whose levels are tightly controlled by the ubiquitin–proteasome system. In response to signal activation and transmission, ubiquitin E1, E2, and E3 enzymes are employed to generate a lysine 48-linked ubiquitin chain that triggers degradation of IκBα by the proteasome. In this chapter we describe an in vitro biochemical approach to reconstitute the ubiquitination system. To do so, we detail methods for the preparation of the relevant enzymes and substrate, as well as for the execution of the reaction with high efficiency. This sensitive and highly reproducible readout can be applied to the study of proteins, small molecules, and other factors that modulate IκBα ubiquitination, thereby producing outcomes that impact NF-κB signaling to advance the course of improving human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Skaug B, Jiang X, Chen ZJ (2009) The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78:769–796

    Article  CAS  PubMed  Google Scholar 

  2. Chen ZJ, Parent L, Maniatis T (1996) Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862

    Article  CAS  PubMed  Google Scholar 

  3. Scherer DC, Brockman JA, Chen Z et al (1995) Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci U S A 92:11259–11263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chen Z, Hagler J, Palombella VJ et al (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9:1586–1597

    Article  CAS  PubMed  Google Scholar 

  5. Tan P, Fuchs SY, Chen A et al (1999) Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol Cell 3:527–533

    Article  CAS  PubMed  Google Scholar 

  6. Yamoah K, Oashi T, Sarikas A et al (2008) Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1’s C-terminal tail. Proc Natl Acad Sci U S A 105:12230–12235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Duda DM, Borg LA, Scott DC et al (2008) Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134:995–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wu K, Kovacev J, Pan Z-Q (2010) Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol Cell 37:784–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Iwai K (2012) Diverse ubiquitin signaling in NF-κB activation. Trends Cell Biol 22:355–364

    Article  CAS  PubMed  Google Scholar 

  10. Xu S, Patel P, Abbasian M et al (2005) In vitro SCFβ-Trcp1-mediated IκBα ubiquitination assay for high-throughput screen. Methods Enzymol 399:729–740

    Article  CAS  PubMed  Google Scholar 

  11. Soucy TA, Smith PG, Milhollen MA et al (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732–736

    Article  CAS  PubMed  Google Scholar 

  12. Ceccarelli DF, Tang X, Pelletier B et al (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145:1075–1087

    Article  CAS  PubMed  Google Scholar 

  13. Shen M, Schmitt S, Buac D et al (2013) Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin Ther Targets 17(9):1091–1108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gazdoiu S, Yamoah K, Wu K et al (2007) Human Cdc34 employs distinct sites to coordinate attachment of ubiquitin to a substrate and assembly of polyubiquitin chains. Mol Cell Biol 27:7041–7052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ohta T, Michel JJ, Schottelius AJ et al (1999) ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 3:535–541

    Article  CAS  PubMed  Google Scholar 

  16. Zheng N, Schulman B, Song L et al (2002) Structure of the Cul 1–Rbx 1–Skp 1–F boxSkp 2 SCF ubiquitin ligase complex. Nature 416:703–709

    Article  CAS  PubMed  Google Scholar 

  17. Li T, Pavletich NP, Schulman BA et al (2005) High-level expression and purification of recombinant SCF ubiquitin ligases. Methods Enzymol 398:125–142

    Article  CAS  PubMed  Google Scholar 

  18. Mercurio F (1997) IKK-1 and IKK-2: cytokine-activated IB kinases essential for NF-B activation. Science (New York, NY) 278:860–866

    Article  CAS  Google Scholar 

  19. Delhase M, Hayakawa M, Chen Y et al (1999) Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science (New York, NY) 284:309–313

    Article  CAS  Google Scholar 

  20. Kovacev J, Wu K, Spratt DE et al (2014) A snapshot at ubiquitin chain elongation: lysine 48-tetra-ubiquitin slows down ubiquitination. J Biol Chem 289(10):7068–7081

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Nayak and other members of the Pan lab for their assistance with protocols and careful reading of the method. We are grateful to J. Hurwitz and I. Tappin for assistance with baculovirus preparation. R.A.C. was supported by NIH fellowship 1F30DK095572-01. Z.-Q.P. is the receipt of the 2013 Jiangsu special medical expert award. This work was supported by Public Health Service grants GM61051 and CA095634 to Z.-Q. P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Qiang Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chong, R.A., Wu, K., Kovacev, J., Pan, ZQ. (2015). Generation of a Proteolytic Signal: E3/E2-Mediated Polyubiquitination of IκBα. In: May, M. (eds) NF-kappa B. Methods in Molecular Biology, vol 1280. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2422-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2422-6_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2421-9

  • Online ISBN: 978-1-4939-2422-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics