Skip to main content

Sequential Structural Changes in Rhodopsin Occurring upon Photoactivation

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

  • 1828 Accesses

Abstract

We describe the use of solid-state magic angle spinning NMR spectroscopy for characterizing the structure and dynamics of dark, inactive rhodopsin and the active metarhodopsin II intermediate. Solid-state NMR spectroscopy is well suited for structural measurements in both detergent micelles and membrane bilayer environments. We first outline the methods for large-scale production of stable, functional rhodopsin containing 13C- and 15N-labeled amino acids. The expression methods make use of eukaryotic HEK293S cell lines that produce correctly folded, fully functional receptors. We subsequently describe the basic methods used for solid-state magic angle spinning NMR measurements of chemical shifts and dipolar couplings, which provide information on rhodopsin structure and dynamics, and describe the use of low-temperature methods to trap the active metarhodopsin II intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baldus M (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl Magn Reson Spec 41:1–47

    Article  CAS  Google Scholar 

  2. Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ahuja S, Hornak V, Yan ECY et al (2009) Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 16:168–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ahuja S, Crocker E, Eilers M et al (2009) Location of the retinal chromophore in the activated state of rhodopsin. J Biol Chem 284:10190–10201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ahuja S, Eilers M, Hirshfeld A et al (2009) 6-s-cis conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin. J Am Chem Soc 131:15160–15169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Goncalves JA, South K, Ahuja S et al (2010) Highly conserved tyrosine stabilizes the active state of rhodopsin. Proc Natl Acad Sci U S A 107:19861–19866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Eilers M, Goncalves JA, Ahuja S et al (2012) Structural transitions of transmembrane helix 6 in the formation of metarhodopsin I. J Phys Chem B 116:10477–10489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287

    Article  CAS  Google Scholar 

  9. Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659

    Article  CAS  Google Scholar 

  10. Schaefer J, Stejskal EO (1976) Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J Am Chem Soc 98:1031–1032

    Article  CAS  Google Scholar 

  11. Maricq MM, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300–3316

    Article  CAS  Google Scholar 

  12. Reeves PJ, Thurmond RL, Khorana HG (1996) Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc Natl Acad Sci U S A 93:11487–11492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Reeves PJ, Kim JM, Khorana HG (2002) Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc Natl Acad Sci U S A 99:13413–13418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Dulbecco R, Freeman G (1959) Plaque production by the polyoma virus. Virology 8:396–397

    Article  CAS  PubMed  Google Scholar 

  15. Smith JD, Freeman G, Vogt M et al (1960) The nucleic acid of polyoma virus. Virology 12:185–196

    Article  CAS  Google Scholar 

  16. Eilers M, Reeves PJ, Ying WW et al (1999) Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine and 13C-glycine labeled opsin in a stable cell line. Proc Natl Acad Sci U S A 96:487–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Takegoshi K, Nakamura S, Terao T (2003) 13C-1H dipolar-driven 13C-13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118:2325–2341

    Article  CAS  Google Scholar 

  18. Takegoshi K, Nakamura S, Terao T (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  CAS  Google Scholar 

  19. Smith SO, Courtin J, de Groot H et al (1991) 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin. Biochemistry 30:7409–7415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH-NSF instrumentation grants (S10 RR13889 and DBI-9977553), a grant from the NIH to S. O. S (GM-41412). We gratefully acknowledge the W.M. Keck Foundation for support of the NMR facilities in the Center of Structural Biology at Stony Brook.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven O. Smith Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kimata, N., Pope, A., Rashid, D., Reeves, P.J., Smith, S.O. (2015). Sequential Structural Changes in Rhodopsin Occurring upon Photoactivation. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics