Skip to main content

Immunocytochemical Assessment of Blood–Brain Barrier Structure, Function, and Damage

  • Protocol
  • First Online:
Immunocytochemistry and Related Techniques

Part of the book series: Neuromethods ((NM,volume 101))

Abstract

Much of our knowledge of the anatomy and physiology of the blood –brain barrier (BBB ) was discovered before the modern era of neuroimaging and molecular biology . However, discoveries in the past 25 years have added a new dimension to our understanding of the BBB and to what has been referred more recently as the neurovascular unit (NVU ). Disruption of the BBB occurs in many neurological diseases , including brain trauma , acute and chronic cerebral ischemia , multiple sclerosis , epilepsy , some neurodegenerative diseases , brain tumors , and brain infections , either viral or bacterial . The BBB forms the interface between the blood and brain tissues. During a brain injury , a cascade of molecular events involving free radicals and proteases that attack basement membrane proteins and degrade the tight junction proteins in endothelial cells results in a final common pathway leading to BBB disruption . Free radicals of oxygen and nitrogen , as well as proteases, matrix met alloproteinases, and cyclooxygenases , are important in the BBB disruption as the neuroinflammatory response progresses. The challenges to treatment of the brain diseases involve understanding the timing of the molecular cascades to block the early BBB injury without interfering with recovery . Morphological methods are important tools, not only in assessing the disruption of the BBB but also in understanding the pathophysiology of the processes leading to BBB leakage . A better knowledge of the intimate events responsible for BBB disturbances can pave the way for new therapeutic approaches. Morphological methods can be applied to experimental models as well as to human specimens. This chapter will describe the different morphological methods available for the evaluation of BBB structure and disruption and for the assessment of molecular events leading to BBB injury. We will first examine different ways for assessing the integrity of the BBB and therefore its leakiness in case of its disruption, then we will consider the immunodetection of the different components of the BBB and the consequences following BBB injury, and finally, we will present how to study the processes involved in BBB disruption (i.e., oxidative stress , matrix metalloproteinases) by using morphological tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenberg GA (2012) Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab 32:1139–1151

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Zozulya AL, Reinke E, Baiu DC et al (2007) Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP-1α chemokine and matrix metalloproteinases. J Immunol 178:520–529

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    CAS  PubMed  Google Scholar 

  4. Furuse M, Fujita K, Hiiragi T et al (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarly to occludin. J Cell Biol 141:1539–1550

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Milner R, Hung S, Wang X et al (2008) Responses of endothelial cells and astrocytes matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 39:191–197

    PubMed Central  PubMed  Google Scholar 

  6. Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood-brain barrier. Curr Pharm Des 14:1581–1593

    CAS  PubMed  Google Scholar 

  7. Daneman R, Zhou L, Kebede AA et al (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Bell RD, Winkler EA, Sagare AP et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Shlosberg D, Benifla M, Kaufer D et al (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6:393–403

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Abbot NJ, Friedman A (2012) Overview and introduction: the blood-brain barrier in health and disease. Epilepsia 53:1–6

    Google Scholar 

  11. Zlokovic BV (2010) Neurodegeneration and the neurovascular unit. Nat Med 16:1370–1371

    CAS  PubMed  Google Scholar 

  12. Perdiki M, Farooque M, Holtz A (1998) Expression of endothelial barrier antigen immunoreactivity in blood vessels following compression trauma to rat spinal cord. Temporal evolution and relation to the degree of the impact. Acta Neuropathol 96:8–12

    CAS  PubMed  Google Scholar 

  13. Bressler J, Clark K, O'Driscoll C (2013) Assessing blood-brain barrier function using in vitro assays. Methods Mol Biol 1066:67–79

    PubMed  Google Scholar 

  14. Naik P, Cucullo L (2012) In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci 101:1337–1354

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Deli MA, Abrahám CS, Kataoka Y et al (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    PubMed  Google Scholar 

  16. Roux F, Couraud PO (2005) Rat brain endothelial cell lines for the study of blood-brain barrier permeability and transport functions. Cell Mol Neurobiol 25:41–58

    PubMed  Google Scholar 

  17. Omidi Y, Campbell L, Barar J et al (2003) Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res 990:95–112

    CAS  PubMed  Google Scholar 

  18. Takata F, Dohgu S, Yamauchi A et al (2013) In vitro blood-brain barrier models using brain capillary endothelial cells isolated from neonatal and adult rats retain age-related barrier properties. PLoS One 8:e55166

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Abbott NJ, Dolman DE, Drndarski S et al (2012) An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol 814:415–430

    CAS  PubMed  Google Scholar 

  20. Nakagawa S, Deli MA, Kawaguchi H et al (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    CAS  PubMed  Google Scholar 

  21. Vernon H, Clark K, Bressler JP (2011) In vitro models to study the blood brain barrier. Methods Mol Biol 758:153–168

    CAS  PubMed  Google Scholar 

  22. Weksler B, Romero IA, Couraud PO (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10:16

    PubMed Central  PubMed  Google Scholar 

  23. Cucullo L, Hossain M, Rapp E et al (2007) Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia 48:505–516

    CAS  PubMed  Google Scholar 

  24. Kim GW, Gasche Y, Grzeschik S et al (2003) Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: role of matrix metalloproteinase-9 in early blood-brain barrier disruption? J Neurosci 23:8733–8742

    CAS  PubMed  Google Scholar 

  25. Louboutin JP, Agrawal L, Reyes BAS et al (2010) HIV-1 gp120-induced injury to the blood-brain barrier: role of metalloproteinases 2 and 9 and relationship to oxidative stress. J Neuropathol Exp Neurol 69:801–816

    CAS  PubMed  Google Scholar 

  26. Louboutin JP, Reyes BAS, Agrawal L et al (2011) HIV-1 gp120 upregulates matrix metalloproteinases and their inhibitors in a rat model of HIV encephalopathy. Eur J Neurosci 34:2015–2023

    PubMed  Google Scholar 

  27. Chen X, Lan X, Roche I et al (2008) Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem 107:1147–1157

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Thornton E, Vink R (2012) Treatment with a substance P receptor antagonist is neuroprotective in the intrastriatal 6-hydroxydopamine model of early Parkinson’s disease. PLoS One 7:e34138

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Garbuzova-Davis S, Louis MK, Haller EM et al (2011) Blood-brain barrier impairment in an animal model of MPS III B. PLoS One 6:e16601

    PubMed Central  CAS  PubMed  Google Scholar 

  30. van Vliet EA, da Costa Araújo S, Redeker S et al (2007) Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130:521–534

    PubMed  Google Scholar 

  31. Marcon J, Gagliardi B, Balosso S et al (2009) Age-dependent vascular changes induced by status epilepticus in rat forebrain: implications for epileptogenesis. Neurobiol Dis 34:121–132

    CAS  PubMed  Google Scholar 

  32. Fernández-López D, Faustino J, Daneman R et al (2012) Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci 32:9588–9600

    PubMed  Google Scholar 

  33. Leak RK, Zhang L, Stetler RA et al (2013) HSP27 protects the blood-brain barrier against ischemia-induced loss of integrity. CNS Neurol Disord Drug Targets 12:325–337

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Rigau V, Morin M, Rousset MC et al (2007) Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956

    PubMed  Google Scholar 

  35. Louboutin JP, Chekmasova AA, Marusich E et al (2011) Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. FASEB J 25:737–753

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Louboutin JP, Agrawal L, Reyes BAS et al (2009) A rat model of human immunodeficiency virus-1 encephalopathy using envelope glycoprotein gp120 expression delivered by SV40 vectors. J Neuropathol Exp Neurol 68:456–473

    CAS  PubMed  Google Scholar 

  37. Garbuzova-Davis S, Mirtyl S, Sallot SA et al (2013) Blood-brain barrier impairment in MPS III patients. BMC Neurol 13:174

    PubMed Central  PubMed  Google Scholar 

  38. Lax NZ, Pienaar IS, Reeve AK et al (2012) Microangiopathy in the cerebellum of patients with mitochondrial DNA disease. Brain 135:1736–1750

    PubMed Central  PubMed  Google Scholar 

  39. Nourhaghighi N, Teichert-Kuliszewska K, Davis J et al (2003) Altered expression of angiopoietins during blood-brain barrier breakdown and angiogenesis. Lab Invest 83:1211–1222

    CAS  PubMed  Google Scholar 

  40. Sokrab TE, Johansson BB, Kalimo H et al (1988) A transient hypertensive opening of the blood-brain barrier can lead to brain damage. Extravasation of serum proteins and cellular changes in rats subjected to aortic compression. Acta Neuropathol 75:557–565

    CAS  PubMed  Google Scholar 

  41. Salahuddin TS, Kalimo H, Johansson BB et al (1988) Observations on exsudation of fibronectin, fibrinogen and albumin in the brain after carotid infusion of hyperosmolar solutions. An immunohistochemical study in the rat indicating longlasting changes in the brain microenvironment and multifocal nerve cell injuries. Acta Neuropathol 76:1–10

    CAS  PubMed  Google Scholar 

  42. Brown H, Hien TT, Day N et al (1999) Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 25:331–340

    CAS  PubMed  Google Scholar 

  43. Viggars AP, Wharton SB, Simpson JE et al (2011) Alterations in the blood brain barrier in ageing cerebral cortex in relationship to Alzheimer-type pathology: a study in the MRC-CFAS population neuropathology cohort. Neurosci Lett 505:25–30

    CAS  PubMed  Google Scholar 

  44. Miyata S, Morita S (2011) A new method for visualization of endothelial cells and extravascular leakage in adult mouse brain using fluorescein isothiocyanate. J Neurosci Methods 202:9–16

    CAS  PubMed  Google Scholar 

  45. Pelz J, Härtig W, Weise C et al (2013) Endothelial barrier antigen-immunoreactivity is conversely associated with blood-brain barrier dysfunction after embolic stroke in rats. Eur J Histochem 57:e38

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Manwani B, Friedler B, Verma R et al (2014) Perfusion of ischemic brain in young and aged animals: a laser speckle flowmetry study. Stroke 45:571–578

    PubMed Central  PubMed  Google Scholar 

  47. Hemley SJ, Bilston LE, Cheng S et al (2012) Aquaporin-4 expression and blood-spinal cord barrier permeability in canalicular syringomyelia. J Neurosur Spine 17:602–612

    Google Scholar 

  48. Louboutin JP, Reyes BAS, Agrawal L et al (2010) Blood-brain barrier abnormalities caused by exposure to HIV-1 gp120- Protection by gene delivery of antioxidant enzymes. Neurobiol Dis 38:313–325

    CAS  PubMed  Google Scholar 

  49. Williams KC, Zhao RW, Ueno K et al (1996) PECAM-1 (CD31) expression in the central nervous system and its role in experimental allergic encephalomyelitis in the rat. J Neurosci Res 45:747–757

    CAS  PubMed  Google Scholar 

  50. Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MC et al (2012) Impaired blood-brain barrier/spinal cord barrier in ALS patients. Brain Res 1469:114–128

    CAS  PubMed  Google Scholar 

  51. Maeda M, Furuichi Y, Noto T et al (2009) Tacrolimus (FK506) suppresses rt-PA-induced hemorrhagic transformation in a rat thrombotic ischemia stroke model. Brain Res 1254:99–108

    CAS  PubMed  Google Scholar 

  52. Larochelle C, Cayrol R, Kebir H et al (2012) Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135:2906–2924

    PubMed  Google Scholar 

  53. Garbuzova-Davis S, Saporta S, Haller E et al (2007) Evidence of compromised blood -spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One 2:e1205

    PubMed Central  PubMed  Google Scholar 

  54. Macmillan CJ, Starkey RJ, Easton AS (2011) Angiogenesis is regulated by angiopoietins during experimental autoimmune encephalomyelitis and is indirectly related to vascular permeability. J Neuropathol Exp Neurol 70:1107–1123

    CAS  PubMed  Google Scholar 

  55. Duran-Vilaregut J, del Valle J, Camins A et al (2009) Blood-brain barrier disruption in the striatum of rats treated with 3-nitropropionic acid. Neurotoxicology 30:136–143

    CAS  PubMed  Google Scholar 

  56. Natah SS, Srinivasan S, Pittman Q et al (2009) Effects of acute hypoxia and hyperthermia on the permeability of the blood-brain barrier in adult rats. J Appl Physiol 107:1348–1356

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Lafuente JV, Argandoña EG, Mitre B (2006) VEGFR-2 expression in brain injury: its distribution related to brain-blood barrier markers. J Neural Transm 113:487–496

    CAS  PubMed  Google Scholar 

  58. Bhattacharjee AK, Kondoh T, Ikeda M et al (2002) MMP-9 and EBA immunoreactivity after papaverine mediated opening of the brain-blood barrier. Neuroreport 13:2217–2221

    CAS  PubMed  Google Scholar 

  59. Gursoy-Ozdemir Y, Qiu J, Matsuoka N et al (2004) Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 113:1447–1455

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Abdel-Rahman A, Shetty AK, Abou-Donia MB (2002) Disruption of the blood-brain barrier and neuronal cell death in cingulate cortex, dentate gyrus, thalamus, and hypothalamus in a rat model of Gulf-War syndrome. Neurobiol Dis 10:306–326

    CAS  PubMed  Google Scholar 

  61. Abdel-Rahman A, Shetty AK, Abou-Donia MB (2002) Acute exposure to sarin increases blood-brain barrier permeability and induces neuropathological changes in the rat brain: dose-response relationships. Neuroscience 113:721–741

    CAS  PubMed  Google Scholar 

  62. Ghabriel MN, Zhu C, Reilly PL et al (2000) Toxin-induced vasogenic cerebral oedema in a rat model. Acta Neurochir Suppl 76:231–236

    CAS  PubMed  Google Scholar 

  63. Sternberger NH, Sternberger LA, Kies MW et al (1989) Cell surface endothelial proteins altered in experimental allergic encephalomyelitis. J Neuroimmunol 21:241–248

    CAS  PubMed  Google Scholar 

  64. Abdul Muneer PM, Alikunju S, Szlachetka AM et al (2011) Inhibitory effects of alcohol on glucose transport across the blood-brain barrier leads to neurodegeneration: preventive role of acetyl-l-carnitine. Psychopharmacology 214:707–718

    CAS  PubMed  Google Scholar 

  65. Zhang X, Li G, Guo L et al (2013) Age-related alteration in cerebral blood flow and energy failure is correlated with cognitive impairment in the senescence-accelerated prone mouse strain 8 (SAMP8). Neurol Sci 34:1917–1924

    PubMed  Google Scholar 

  66. Merlini M, Meyer EP, Ulmann-Schuler A et al (2011) Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice. Acta Neuropathol 122:293–311

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Abdul Muneer PM, Alikunju S, Szlachetka AM et al (2011) Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. Mol Neurodegener 6:23

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Nag S (1996) Cold-injury of the cerebral cortex: immunolocalization of cellular proteins and blood-brain barrier permeability studies. J Neuropathol Exp Neurol 55:880–888

    CAS  PubMed  Google Scholar 

  69. Cornford EM, Hyman S, Cornford ME et al (1996) Glut1 glucose transporter activity in human brain injury. J Neurotrauma 13:523–536

    CAS  PubMed  Google Scholar 

  70. Yang Y, Rosenberg GA (2011) MMP-mediated disruption of claudin-5 in the blood-brain barrier of rat brain after cerebral ischemia. Methods Mol Biol 762:333–345

    CAS  PubMed  Google Scholar 

  71. Willis CL, Leach L, Clarke GJ et al (2004) Reversible disruption of tight junction complexes in the rat brain-blood barrier, following transitory focal astrocyte loss. Glia 48:1–13

    PubMed  Google Scholar 

  72. Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol 114:459–469

    CAS  PubMed  Google Scholar 

  73. Pfeiffer F, Schäfer J, Lyck R et al (2011) Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol 122:601–614

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Zhang S, Kan QC, Xu Y et al (2013) Inhibitory effect of matrine on blood-brain barrier disruption for the treatment of experimental autoimmune encephalomyelitis. Mediators Inflamm 2013:736085. doi:10.1155/2013/736085

    PubMed Central  PubMed  Google Scholar 

  75. Lekic T, Rolland W, Manaenko A et al (2013) Evaluation of the hematoma consequences, neurobehavioral profiles, and histopathology in a rat model of pontine hemorrhage. J Neurosurg 118:465–477

    PubMed Central  PubMed  Google Scholar 

  76. Rubio-Araiz A, Perez-Hernandez M, Urrutia A et al (2014) 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors. Int J Neuropsychopharmacol 14:1–13

    Google Scholar 

  77. Lee JY, Lee HE, Kang SR et al (2014) Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood-brain barrier disruption. Neuropharmacology 79:161–171

    CAS  PubMed  Google Scholar 

  78. Han HS, Jang JH, Park JS et al (2013) Transient blood-brain barrier disruption induced by oleic acid is mediated by nitric oxide. Curr Neurovasc Res 10:287–296

    CAS  PubMed  Google Scholar 

  79. Cui J, Chen S, Zhang C et al (2012) Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol Neurodegener 7:21

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Copin JC, Bengualid DJ, Da Silva RF et al (2011) Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse. Eur J Neurosci 34:1085–1092

    PubMed  Google Scholar 

  81. Michalski D, Grosche J, Pelz J et al (2010) A novel quantification of blood-brain barrier damage and histochemical typing after embolic stroke in rats. Brain Res 1359:186–200

    CAS  PubMed  Google Scholar 

  82. Guo Z, Sun X, He Z et al (2010) Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. Neurol Res 32:715–720

    CAS  PubMed  Google Scholar 

  83. Berzin TM, Zipser BD, Rafii MS et al (2000) Agrin and microvascular damage in Alzheimer’s disease. Neurobiol Aging 21:349–355

    CAS  PubMed  Google Scholar 

  84. Davis W, Mahale S, Carranza A et al (2007) Exercise pre-conditioning ameliorates blood-brain barrier dysfunction in stroke by enhancing basal lamina. Neurol Res 29:382–387

    CAS  PubMed  Google Scholar 

  85. Schöller K, Trinkl A, Klopotowski M et al (2007) Characterization of microvascular basal lamina damage and blood-brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res 1142:237–246

    PubMed  Google Scholar 

  86. Muellner A, Benz M, Kloss CU et al (2003) Microvascular basal lamina antigen loss after traumatic brain injury in the rat. J Neurotrauma 20:745–754

    PubMed  Google Scholar 

  87. Sellner J, Leib SL (2006) In bacterial meningitis cortical brain damage is associated with changes in parenchymal MMP-9/TIMP-1 ratio and increased collagen type IV degradation. Neurobiol Dis 21:647–656

    CAS  PubMed  Google Scholar 

  88. Gidday JM, Gasche YG, Copin JC et al (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289:H558–H568

    CAS  PubMed  Google Scholar 

  89. Lee WH, Warrington JP, Sonntag WE et al (2012) Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain. Int J Radiot Oncol Biol Phys 82:1559–1566

    CAS  Google Scholar 

  90. Büttner A, Mehraein P, Weis S (1996) Vascular changes in the cerebral cortex in HIV-1 infection. II. An immunohistochemical and lectinhistochemical investigation. Acta Neuropathol 92:35–41

    PubMed  Google Scholar 

  91. Gardner J, Ghorpade A (2001) Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system. J Neurosci Res 15:801–806

    Google Scholar 

  92. Nagakawa T, Kubota T, Kabuto M et al (1994) Production of matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 by human brain tumors. J Neurosurg 81:69–77

    Google Scholar 

  93. Cunningham LA, Wetzel M, Rosenberg GA (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50:329–339

    PubMed  Google Scholar 

  94. Lorenzl S, Albers DS, Narr S et al (2002) Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp Neurol 178:13–20

    CAS  PubMed  Google Scholar 

  95. Tan HK, Heywood D, Ralph GS et al (2003) Tissue inhibitor of matrix metalloproteinase 1 inhibits excitotoxic cell death in neurons. Mol Cell Neurosci 22:98–106

    CAS  PubMed  Google Scholar 

  96. Groft LL, Muzik H, Rewcastle NB et al (2001) Differential expression and localization of TIMP-1 and TIMP-4 in human glioma. Br J Cancer 6:55–63

    Google Scholar 

  97. Lu XY, Wang HD, Xu JG et al (2014) NADPH oxidase inhibition improves neurological outcome in experimental traumatic brain injury. Neurochem Int. doi:10.1016/j.neuint.2014.02.006

    Google Scholar 

  98. Kraft P, Göb E, Schuhmann MK (2013) FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke 44:3202–3210

    CAS  PubMed  Google Scholar 

  99. del Valle J, Duran-Vilaregut J, Manich G et al (2001) Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice. Neurodegener Dis 8:421–429

    Google Scholar 

  100. Awad AS (2006) Role of AT1 receptors in permeability of the blood-brain barrier in diabetic hypertensive rats. Vascul Pharmacol 45:141–147

    CAS  PubMed  Google Scholar 

  101. Louboutin JP, Chekmasova AA, Marusich E et al (2010) Efficient CNS gene delivery by intravenous injection. Nature Meth 7:905–907

    CAS  Google Scholar 

  102. Huang MB, Hunter M, Bond VC (1999) Effect of extracellular human immunodeficiency virus type 1 glycoprotein 120 on primary human vascular endothelium cell cultures. AIDS Res Hum Retroviruses 15:1265–1277

    CAS  PubMed  Google Scholar 

  103. Price TO, Ercal N, Nakaoke R et al (2005) HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res 1045:57–63

    CAS  PubMed  Google Scholar 

  104. Kanmogne GD, Schall K, Leibhart J et al (2007) HIV-1 gp120 compromises blood-brain barrier integrity and enhances monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 27:123–134

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Louboutin JP, Strayer DS (2012) Blood-brain barrier abnormalities caused by HIV-1 gp120: mechanistic and therapeutic implications. ScientificWorldJournal 2012:482575

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Louboutin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Louboutin, JP. (2015). Immunocytochemical Assessment of Blood–Brain Barrier Structure, Function, and Damage. In: Merighi, A., Lossi, L. (eds) Immunocytochemistry and Related Techniques. Neuromethods, vol 101. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2313-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2313-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2312-0

  • Online ISBN: 978-1-4939-2313-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics