Skip to main content

Characterization of Amyloid-Like Properties in Bacterial Intracellular Aggregates

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1258))

Abstract

Protein aggregation into amyloid conformations is associated with more than 50 different human disorders. Recent studies demonstrate that the expression in bacteria of amyloid proteins results in the formation of intracellular aggregates structurally related to those underlying human diseases. The ease with which prokaryotic organisms can be genetically and biochemically manipulated makes them useful systems for studying how and why protein aggregates inside the cell, providing a tractable environment to rationally model in vivo amyloid formation. In this chapter we present an overview of the methods used to characterize the kinetic, structural, and functional properties of amyloid-like bacterial intracellular aggregates and how they can be employed to screen for lead compounds that might modulate amyloid deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Invernizzi G, Papaleo E, Sabate R et al (2012) Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 44:1541–1554

    Article  CAS  PubMed  Google Scholar 

  2. Calamai M, Kumita JR, Mifsud J et al (2006) Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes. Biochemistry 45:12806–12815

    Article  CAS  PubMed  Google Scholar 

  3. Fernandez-Busquets X, de Groot NS, Fernandez D et al (2008) Recent structural and computational insights into conformational diseases. Curr Med Chem 15:1336–1349

    Article  CAS  PubMed  Google Scholar 

  4. Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16:260–265

    Article  CAS  PubMed  Google Scholar 

  5. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24:179–185

    Article  CAS  PubMed  Google Scholar 

  6. de Groot NS, Sabate R, Ventura S (2009) Amyloids in bacterial inclusion bodies. Trends Biochem Sci 34:408–416

    Article  PubMed  Google Scholar 

  7. Sabate R, de Groot NS, Ventura S (2010) Protein folding and aggregation in bacteria. Cell Mol Life Sci 67:2695–2715

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Fruitos E, Sabate R, de Groot NS et al (2011) Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS J 278:2419–2427

    Article  CAS  PubMed  Google Scholar 

  9. Carrio M, Gonzalez-Montalban N, Vera A et al (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    Article  CAS  PubMed  Google Scholar 

  10. Morell M, Bravo R, Espargaro A et al (2008) Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta 1783:1815–1825

    Article  CAS  PubMed  Google Scholar 

  11. Dasari M, Espargaro A, Sabate R et al (2011) Bacterial inclusion bodies of Alzheimer’s disease beta-amyloid peptides can be employed to study native-like aggregation intermediate states. Chembiochem 12:407–423

    Article  CAS  PubMed  Google Scholar 

  12. de Groot NS, Ventura S (2006) Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. J Biotechnol 125:110–113

    Article  PubMed  Google Scholar 

  13. de Groot NS, Aviles FX, Vendrell J et al (2006) Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities. FEBS J 273:658–668

    Article  PubMed  Google Scholar 

  14. Villar-Pique A, Espargaro A, Sabate R et al (2012) Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors. Microb Cell Fact 11:55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Villar-Pique A, de Groot NS, Sabate R et al (2012) The effect of amyloidogenic peptides on bacterial aging correlates with their intrinsic aggregation propensity. J Mol Biol 421:270–281

    Article  CAS  PubMed  Google Scholar 

  16. Jahn TR, Radford SE (2008) Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 469:100–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Garcia-Fruitos E, Gonzalez-Montalban N, Morell M et al (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27

    Article  PubMed Central  PubMed  Google Scholar 

  18. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  19. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  20. Waldo GS, Standish BM, Berendzen J et al (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17:691–695

    Article  CAS  PubMed  Google Scholar 

  21. Belli M, Ramazzotti M, Chiti F (2011) Prediction of amyloid aggregation in vivo. EMBO Rep 12:657–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Castillo V, Grana-Montes R, Sabate R et al (2011) Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes. Biotechnol J 6:674–685

    Article  CAS  PubMed  Google Scholar 

  23. Guidolin D, Agnati LF, Albertin G et al (2012) Bioinformatics aggregation predictors in the study of protein conformational diseases of the human nervous system. Electrophoresis 33:3669–3679

    Article  CAS  PubMed  Google Scholar 

  24. Conchillo-Sole O, de Groot NS, Aviles FX et al (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65

    Article  PubMed Central  PubMed  Google Scholar 

  25. Woulfe J (2008) Nuclear bodies in neurodegenerative disease. Biochim Biophys Acta 1783:2195–2206

    Article  CAS  PubMed  Google Scholar 

  26. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  CAS  PubMed  Google Scholar 

  27. Lindner AB, Madden R, Demarez A et al (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A 105:3076–3081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kim W, Kim Y, Min J et al (2006) A high-throughput screen for compounds that inhibit aggregation of the Alzheimer’s peptide. ACS Chem Biol 1:461–469

    Article  CAS  PubMed  Google Scholar 

  29. Martinez-Alonso M, Vera A, Villaverde A (2007) Role of the chaperone DnaK in protein solubility and conformational quality in inclusion body-forming Escherichia coli cells. FEMS Microbiol Lett 273:187–195

    Article  CAS  PubMed  Google Scholar 

  30. Vera A, Gonzalez-Montalban N, Aris A et al (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96:1101–1106

    Article  CAS  PubMed  Google Scholar 

  31. de Groot NS, Ventura S (2006) Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett 580:6471–6476

    Article  PubMed  Google Scholar 

  32. Espargaro A, Sabate R, Ventura S (2012) Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation. Mol Biosyst 8:2839–2844

    Article  CAS  PubMed  Google Scholar 

  33. Rajan RS, Illing ME, Bence NF et al (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci U S A 98:13060–13065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hart RA, Rinas U, Bailey JE (1990) Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli. J Biol Chem 265:12728–12733

    CAS  PubMed  Google Scholar 

  35. Wang L, Maji SK, Sawaya MR et al (2008) Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol 6:e195

    Article  PubMed Central  PubMed  Google Scholar 

  36. Cano-Garrido O, Rodriguez-Carmona E, Diez-Gil C et al (2013) Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 9:6134–6142

    Article  CAS  PubMed  Google Scholar 

  37. Hubbard SJ (1998) The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta 1382:191–206

    Article  CAS  PubMed  Google Scholar 

  38. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai) 39:549–559

    Article  CAS  Google Scholar 

  39. Tycko R (2006) Solid-state NMR as a probe of amyloid structure. Protein Pept Lett 13:229–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  CAS  PubMed  Google Scholar 

  41. Wasmer C, Benkemoun L, Sabate R et al (2009) Solid-state NMR spectroscopy reveals that E. coli inclusion bodies of HET-s(218–289) are amyloids. Angew Chem Int Ed Engl 48:4858–4860

    Article  CAS  PubMed  Google Scholar 

  42. Garrity SJ, Sivanathan V, Dong J et al (2010) Conversion of a yeast prion protein to an infectious form in bacteria. Proc Natl Acad Sci U S A 107:10596–10601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Espargaro A, Villar-Pique A, Sabate R et al (2012) Yeast prions form infectious amyloid inclusion bodies in bacteria. Microb Cell Fact 11:89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Liebman SW, Derkatch IL (1999) The yeast [PSI+] prion: making sense of nonsense. J Biol Chem 274:1181–1184

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka M, Weissman JS (2006) An efficient protein transformation protocol for introducing prions into yeast. Methods Enzymol 412:185–200

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka M (2010) A protein transformation protocol for introducing yeast prion particles into yeast. Methods Enzymol 470:681–693

    Article  CAS  PubMed  Google Scholar 

  47. Chernoff YO, Lindquist SL, Ono B et al (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants BFU2010-14901 from Ministerio de Ciencia e Innovación (Spain), 2009-SGR-760 from AGAUR (Generalitat de Catalunya). S.V. has been granted an ICREA Academia award (ICREA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Villar-Pique, A., Navarro, S., Ventura, S. (2015). Characterization of Amyloid-Like Properties in Bacterial Intracellular Aggregates. In: García-Fruitós, E. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 1258. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2205-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2205-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2204-8

  • Online ISBN: 978-1-4939-2205-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics