Skip to main content

Mitophagy and Mitochondrial Balance

  • Protocol
  • First Online:
Mitochondrial Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1241))

Abstract

Mitochondria are highly dynamic organelles, with a morphology ranging from small roundish elements to large interconnected networks. This fine architecture has a significant impact on mitochondrial homeostasis, and mitochondrial morphology is highly connected to specific cellular process. Autophagy is a catabolic process in which cell constituents, including proteins and organelles, are delivered to the lysosomal compartment for degradation. Autophagy has multiple physiological functions and recent advances have demonstrated that this process is linked to different human diseases, such as cancer and neurodegenerative disorders.

In particular, it has been found that autophagy is a key determinant for the life span of mitochondria through a particularly fine-tuned mechanism called mitophagy, a selective form of autophagy, which ensures the preservation of healthy mitochondria through the removal of damaged or superfluous mitochondria. Mitophagy has been found to be altered in several pathologies and aberrant or excessive levels of this process are found in common human disorders. Thus, the measurement of the mitophagy levels is of fundamental relevance to elucidate the molecular mechanism of this process and, most importantly, its role in cellular homeostasis and disease.

In this review, we will provide an overview of the current methods used to measure mitophagic levels, with particular emphasis on the techniques based on fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haigis MC, Deng CX, Finley LW, Kim HS, Gius D (2012) SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer Res 72:2468–2472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A et al (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Patergnani S, Marchi S, Rimessi A, Bonora M, Giorgi C, Mehta KD, Pinton P (2013) PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy 9:1367–1385

    Article  PubMed  CAS  Google Scholar 

  4. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    PubMed  CAS  Google Scholar 

  5. Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18:190–198

    Article  PubMed  CAS  Google Scholar 

  6. Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM et al (2012) Mitochondrial Ca(2+) and apoptosis. Cell Calcium 52:36–43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F et al (2012) Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct 2012:329635

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  9. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23:64–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    Article  PubMed  CAS  Google Scholar 

  11. Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Springer W, Kahle PJ (2011) Regulation of PINK1-Parkin-mediated mitophagy. Autophagy 7:266–278

    Article  PubMed  CAS  Google Scholar 

  13. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 117:856–867

    Article  PubMed  CAS  Google Scholar 

  15. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Jin SM, Youle RJ (2012) PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci 125:795–799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Lu H, Li G, Liu L, Feng L, Wang X, Jin H (2013) Regulation and function of mitophagy in development and cancer. Autophagy 9:1720–1736

    Article  PubMed  CAS  Google Scholar 

  19. Dagda RK, Cherra SJ III, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, Ruonala MO, Priault M, Salin B, Reichert AS (2012) Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta 1823:2297–2310

    Article  PubMed  CAS  Google Scholar 

  21. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Dolman NJ, Chambers KM, Mandavilli B, Batchelor RH, Janes MS (2013) Tools and techniques to measure mitophagy using fluorescence microscopy. Autophagy 9:1653–1662

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2:39–46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  PubMed  CAS  Google Scholar 

  25. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18:1042–1052

    Article  PubMed  CAS  Google Scholar 

  26. Hernandez G, Thornton C, Stotland A, Lui D, Sin J, Ramil J, Magee N, Andres A, Quarato G, Carreira RS et al (2013) MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy 9:1852–1861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Yang JY, Yang WY (2011) Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells. Autophagy 7:1230–1238

    Article  PubMed  CAS  Google Scholar 

  29. Zhu J, Dagda RK, Chu CT (2011) Monitoring mitophagy in neuronal cell cultures. Methods Mol Biol 793:325–339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Rakovic A, Shurkewitsch K, Seibler P, Grunewald A, Zanon A, Hagenah J, Krainc D, Klein C (2013) Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem 288:2223–2237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Chen Y, Balasubramaniyan V, Peng J, Hurlock EC, Tallquist M, Li J, Lu QR (2007) Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2:1044–1051

    Article  PubMed  CAS  Google Scholar 

  34. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  PubMed  CAS  Google Scholar 

  35. Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R et al (2013) High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504(7479):291–295

    Article  PubMed  CAS  Google Scholar 

  36. Duchen MR, Surin A, Jacobson J (2003) Imaging mitochondrial function in intact cells. Methods Enzymol 361:353–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by: the Italian Association for Cancer Research (AIRC); Telethon (GGP11139B); local funds from the University of Ferrara; the Italian Ministry of Education, University and Research (COFIN, FIRB, and Futuro in Ricerca); and the Italian Ministry of Health to Paolo Pinton. Simone Patergnani was supported by a FISM (Fondazione Italiana Sclerosi Multipla) research fellowship (2012/B/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pinton Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Patergnani, S., Pinton, P. (2015). Mitophagy and Mitochondrial Balance. In: Palmeira, C., Rolo, A. (eds) Mitochondrial Regulation. Methods in Molecular Biology, vol 1241. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1875-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1875-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1874-4

  • Online ISBN: 978-1-4939-1875-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics