Skip to main content

Gene Editing Using ssODNs with Engineered Endonucleases

  • Protocol
  • First Online:
Chromosomal Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1239))

Abstract

Gene editing using engineered endonucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nucleases, requires the creation of a targeted, chromosomal DNA double-stranded break (DSB). In mammalian cells, these DSBs are typically repaired by one of the two major DNA repair pathways: nonhomologous end joining (NHEJ) or homology-directed repair (HDR). NHEJ is an error-prone repair process that can result in a wide range of end-joining events that leads to somewhat random mutations at the site of DSB. HDR is a precise repair pathway that can utilize either an endogenous or exogenous piece of homologous DNA as a template or “donor” for repair. Traditional gene editing via HDR has relied on the co-delivery of a targeted, engineered endonuclease and a circular plasmid donor construct. More recently, it has been shown that single-stranded oligodeoxynucleotides (ssODNs) can also serve as DNA donors and thus obviate the more laborious and time-consuming plasmid vector construction process. Here we describe the use of ssODNs for making defined genome modifications in combination with engineered endonucleases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Pfeiffer P, Goedecke W, Obe G (2000) Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis 15:289–302

    Article  CAS  PubMed  Google Scholar 

  3. Orlando SJ, Santiago Y, DeKelver RC et al (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. doi:10.1093/nar/gkq512v

    Google Scholar 

  4. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  5. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jensen NM, Dalsgaard T, Jakobsen M et al (2011) An update on targeted gene repair in mammalian cells: methods and mechanisms. J Biomed Sci. doi:10.1186/1423-0127-18-10

    PubMed Central  PubMed  Google Scholar 

  7. Bibikova M, Beumer K, Trautman JK et al (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  CAS  PubMed  Google Scholar 

  8. Urnov FD, Miller JC, Lee YL et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  9. Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Moehle EA, Rock JM, Lee YL et al (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104:3055–3060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Campbell CR, Keown W, Lowe L et al (1989) Homologous recombination involving small single-stranded oligonucleotides in human cells. New Biol 1:223–227

    CAS  PubMed  Google Scholar 

  12. Igoucheva O, Alexeev V, Yoon K (2001) Targeted gene correction by small single-stranded oligonucleotides in mammalian cells. Gene Ther 8:391–399

    Article  CAS  PubMed  Google Scholar 

  13. Rios X, Briggs AW, Christodoulou D et al (2012) Stable gene targeting in human cells using single-strand oligonucleotides with modified bases. PLoS ONE. doi:10.1371/journal.pone.0036697

    Google Scholar 

  14. Storici F, Snipe JR, Chan GK et al (2006) Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol Cell Biol 26:7645–7657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Liu J, Majumdar A, Liu J et al (2010) Sequence conversion by single strand oligonucleotide donors via non homologous end joining in mammalian cells. J Biol Chem 285:23198–23207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Radecke S, Radecke F, Cathomen T et al (2010) Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Mol Ther 18:743–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chen F, Pruett-Miller SM, Huang Y et al (2011) High-frequency genome editing using ssDNAoligonucleotides with zinc-finger nucleases. Nat Methods 8:753–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17(1):11–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cohen MS, Zhang C, Shokat KM et al (2005) Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308:1318–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Doehn U, Hauge C, Frank SR et al (2009) RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell 35:511–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Meyer M, Ortiz O, Hrabe de Angelis M et al (2012) Modeling disease mutations by gene targeting in one-cell mouse embryos. Proc Natl Acad Sci U S A 109:9354–9359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, F., Pruett-Miller, S.M., Davis, G.D. (2015). Gene Editing Using ssODNs with Engineered Endonucleases. In: Pruett-Miller, S. (eds) Chromosomal Mutagenesis. Methods in Molecular Biology, vol 1239. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1862-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1862-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1861-4

  • Online ISBN: 978-1-4939-1862-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics