Skip to main content

Genome-Scale Metabolic Network Reconstruction

  • Protocol
Bacterial Pangenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1231))

Abstract

Bacterial metabolism is an important source of novel products/processes for everyday life and strong efforts are being undertaken to discover and exploit new usable substances of microbial origin. Computational modeling and in silico simulations are powerful tools in this context since they allow the exploration and a deeper understanding of bacterial metabolic circuits. Many approaches exist to quantitatively simulate chemical reaction fluxes within the whole microbial metabolism and, regardless of the technique of choice, metabolic model reconstruction is the first step in every modeling pipeline. Reconstructing a metabolic network consists in drafting the list of the biochemical reactions that an organism can carry out together with information on cellular boundaries, a biomass assembly reaction, and exchange fluxes with the external environment. Building up models able to represent the different functional cellular states is universally recognized as a tricky task that requires intensive manual effort and much additional information besides genome sequence. In this chapter we present a general protocol for metabolic reconstruction in bacteria and the main challenges encountered during this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Downs DM (2003) Genomics and bacterial metabolism. Curr Issues Mol Biol 5(1):17–25

    CAS  PubMed  Google Scholar 

  2. Beloqui A, de Maria PD, Golyshin PN, Ferrer M (2008) Recent trends in industrial microbiology. Curr Opin Microbiol 11(3):240–248

    Article  CAS  PubMed  Google Scholar 

  3. Zou W et al (2012) Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol 161(1):42–48

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Ochoa F, Santos VE, Casas JA, Gomez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18(7):549–579

    Article  CAS  PubMed  Google Scholar 

  5. George HA, Johnson JL, Moore WE, Holdeman LV, Chen JS (1983) Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol 45(3):1160–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee SJ et al (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. (Translated from eng). Appl Environ Microbiol 71(12):7880–7887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320 (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oberhardt MA, Chavali AK, Papin JA (2009) Flux balance analysis: interrogating genome-scale metabolic networks. Methods Mol Biol 500:61–80

    Article  CAS  PubMed  Google Scholar 

  11. Fang X, Wallqvist A, Reifman J (2012) Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia. PLoS Comput Biol 8(9):e1002688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park JM, Kim TY, Lee SY (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv 27(6):979–988 (in eng)

    Article  PubMed  Google Scholar 

  13. Maarleveld TR, Khandelwal RA, Olivier BG, Teusink B, Bruggeman FJ (2013) Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnol J 8(9):997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moura M, Broadbelt L, Tyo K (2013) Computational tools for guided discovery and engineering of metabolic pathways. Methods Mol Biol 985:123–147

    Article  CAS  PubMed  Google Scholar 

  15. Copeland WB et al (2012) Computational tools for metabolic engineering. Metab Eng 14(3):270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33(1):164–190 (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aziz RK et al (2008) The RAST Server: rapid annotations using subsystems technology. (Translated from eng). BMC Genomics 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schneider J et al (2010) CARMEN - comparative analysis and in silico reconstruction of organism-specific MEtabolic networks. Genet Mol Res 9(3):1660–1672

    Article  CAS  PubMed  Google Scholar 

  19. Feng X, Xu Y, Chen Y, Tang YJ (2012) MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol 6:94

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karp PD et al (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11(1):40–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reyes R et al (2012) Automation on the generation of genome-scale metabolic models. (Translated from eng). J Comput Biol 19(12):1295–1306

    Article  CAS  PubMed  Google Scholar 

  22. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thiele I, Palsson BO (2010) Reconstruction annotation jamborees: a community approach to systems biology. Mol Syst Biol 6:361

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dandekar T, Fieselmann A, Majeed S, Ahmed Z (2012) Software applications toward quantitative metabolic flux analysis and modeling. Brief Bioinform 15:91

    Article  PubMed  Google Scholar 

  25. Henry CS et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. (Translated from eng). Nat Biotechnol 28(9):977–982

    Article  CAS  PubMed  Google Scholar 

  26. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101, discussion 101–103, 119–128, 244–152

    Article  CAS  PubMed  Google Scholar 

  27. Karp PD, Paley S (1996) Integrated access to metabolic and genomic data. J Comput Biol 3(1):191–212 (in eng)

    Article  CAS  PubMed  Google Scholar 

  28. Karp PD, Paley S, Romero P (2002) The pathway tools software. Bioinformatics 18(Suppl 1):S225–S232

    Article  PubMed  Google Scholar 

  29. Caspi R et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40(Database issue):D742–D753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karp PD, Riley M, Paley SM, Pellegrini-Toole A (2002) The MetaCyc database. Nucleic Acids Res 30(1):59–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Altman T, Travers M, Kothari A, Caspi R, Karp PD (2013) A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinform 14(1):112 (in Eng)

    Article  Google Scholar 

  32. Hyland C, Pinney JW, McConkey GA, Westhead DR (2006) metaSHARK: a WWW platform for interactive exploration of metabolic networks. Nucleic Acids Res 34(Web Server issue):W725–W728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pinney JW, Shirley MW, McConkey GA, Westhead DR (2005) metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella. Nucleic Acids Res 33(4):1399–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liao YC, Tsai MH, Chen FC, Hsiung CA (2012) GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics 28(13):1752–1758

    Article  CAS  PubMed  Google Scholar 

  35. Agren R et al (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Swainston N, Smallbone K, Mendes P, Kell D, Paton N (2011) The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks. J Integr Bioinform 8(2):186

    PubMed  Google Scholar 

  37. Hucka M et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Article  CAS  PubMed  Google Scholar 

  38. Bray T, Paoli J, Sperberg-McQueen CM (1998) Extensible markup language (XML) 1.0. Available from: http://www.w3.org/TR/1998/REC-xml-19980210

  39. Feist AM et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schellenberger J et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst Biol 7:74

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bornstein BJ, Keating SM, Jouraku A, Hucka M (2008) LibSBML: an API library for SBML. Bioinformatics 24(6):880–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karp PD et al (2000) The EcoCyc and MetaCyc databases. Nucleic Acids Res 28(1):56–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VA, Papin JA (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190(8):2790–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang K et al (2011) Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC Syst Biol 5:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oberhardt MA, Puchalka J, Martins dos Santos VA, Papin JA (2011) Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput Biol 7(3):e1001116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34(Database issue):D181–D186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340 (in eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lisha KP, Sarkar D (2014) Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production. Bioprocess Biosyst Eng 37(4):617–627

    Article  CAS  PubMed  Google Scholar 

  50. Overbeek R et al (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33(17):5691–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boele J, Olivier BG, Teusink B (2012) FAME, the flux analysis and modeling environment. BMC Syst Biol 6:8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Fondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fondi, M., Liò, P. (2015). Genome-Scale Metabolic Network Reconstruction. In: Mengoni, A., Galardini, M., Fondi, M. (eds) Bacterial Pangenomics. Methods in Molecular Biology, vol 1231. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1720-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1720-4_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1719-8

  • Online ISBN: 978-1-4939-1720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics