Skip to main content

Homogeneous, Bioluminescent Proteasome Assays

  • Protocol
  • First Online:
Apoptosis and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1219))

Abstract

Protein degradation is mediated predominantly through the ubiquitin–proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer [1–6]. The proteasome is also essential for degrading misfolded and aberrant proteins, and impaired proteasome function has been implicated in neurodegerative and cardiovascular diseases [7, 8]. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autofluorescence or interference from fluorescent library compounds. Furthermore, fluorescent proteasome assays require column-purified 20S or 26S proteasome (typically obtained from erythrocytes), or proteasome extracts from whole cells, as their samples. To provide assays more amenable to high-throughput screening, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. Using substrates for the chymotrypsin-like, trypsin-like, and caspase-like proteasome activities in combination with a selective membrane permeabilization step, we developed single-step, cell-based assays to measure each of the proteasome catalytic activities. The homogeneous method eliminates the need to prepare individual cell extracts as samples and has adequate sensitivity for 96- and 384-well plates. The simple “add and read” format enables sensitive and rapid proteasome assays ideal for inhibitor screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams J et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Can Res 59:2615–2622

    CAS  Google Scholar 

  2. Adams J (2002) Development of the proteasome inhibitor PS-341. Oncologist 7:9–16

    Article  PubMed  CAS  Google Scholar 

  3. Voorhees PM, Dees EC, O’Neil B et al (2003) The proteasome as a target for cancer therapy. Clin Cancer Res 9:6316–6325

    PubMed  CAS  Google Scholar 

  4. Burger AM, Seth AK (2004) The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 4:2217–2229

    Article  Google Scholar 

  5. Goldberg AL (2012) Development of proteasome inhibitors as research tools and cancer drugs. J Cell Biol 199:583–588

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Gu Z, Nakamura D, Yao D et al (2005) Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson’s disease. Cell Death Diff 12:1202–1204

    Article  CAS  Google Scholar 

  8. Willis MS, Townley-Tilson WHD, Kang EY et al (2010) Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circ Res 106:463–478

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Baumeister W, Walz J, Zühl F, Seemüller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380

    Article  PubMed  CAS  Google Scholar 

  10. Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochem Biophy Acta 1695:19–31

    Article  CAS  Google Scholar 

  11. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  12. Rajkumar SV, Richardson PG, Hideshima T et al (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639

    Article  PubMed  CAS  Google Scholar 

  13. Nussbaum AK, Dick TP, Keilholz W et al (1998) Cleavage motifs of the yeast 20S proteasome β subunits deduced from digest of enolase I. Proc Natl Acad Sci U S A 95:12504–12509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33

    Article  PubMed  CAS  Google Scholar 

  15. Kisselev AF, Kaganovich D, Goldberg AL (2002) Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20S proteasomes. J Biol Chem 277:22260–22270

    Article  PubMed  CAS  Google Scholar 

  16. Kisselev AF, Garcia-Calvo M, Overkleeft HS et al (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J Biol Chem 278:35869–35877

    Article  PubMed  CAS  Google Scholar 

  17. Ciechanover A (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Diff 12:1178–1190

    Article  CAS  Google Scholar 

  18. Chauhan D, Hideshima T, Anderson KC (2005) Proteasome inhibition in multiple myeloma: therapeutic implication. Annu Rev Pharmacol Toxicol 45:465–476

    Article  PubMed  CAS  Google Scholar 

  19. Chauhan D, Catley L, Li G et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419

    Article  PubMed  CAS  Google Scholar 

  20. Blackburn C, Gigstad KM, Hales P et al (2010) Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S β5-subunit. Biochem J 430:461–476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Obaidat A, Weiss J, Wahlgren B et al (2011) Proteasome regulator marizomib (NPI-0052) exhibits prolonged inhibition, attenuated efflux, and greater cytotoxicity than its reversible analogs. J Pharmacol Exp Ther 337:479–486

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Thompson JL (2013) Carfilzomib: a second-generation proteasome inhibitor for the treatment of relapsed and refractory multiple myeloma. Ann Pharmacother 47:56–62

    Article  PubMed  Google Scholar 

  23. Richardson PG, Barlogie B, Berenson J et al (2003) Phase 2 study of bortezomib in relapsed, refractory myeloma. New Eng J Med 348:2609–2617

    Article  PubMed  CAS  Google Scholar 

  24. Agyin JK, Santhamma B, Nair HB et al (2009) BU-32: a novel proteasome inhibitor for breast cancer. Breast Cancer Res 11:R74

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roth P, Kissel M, Herrmann C et al (2009) SC68896, A novel small molecule proteasome inhibitor, exerts antiglioma activity in vitro and in vivo. Clin Cancer Res 15:6609–6618

    Article  PubMed  CAS  Google Scholar 

  26. Kupperman E, Lee EC, Cao Y et al (2010) Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res 70:1970–1980

    Article  PubMed  CAS  Google Scholar 

  27. Papandreou CN, Logothetis CJ (2004) Bortezomib as a potential treatment for prostate cancer. Can Res 64:5036–5043

    Article  CAS  Google Scholar 

  28. Leytus SP, Melhado LL, Mangel WF (1983) Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem J 209:299–307

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Liu J, Bhalgat M, Zhang C et al (1999) Fluorescent molecular probes V: a sensitive caspase-3 substrate for fluorometric assays. Bioorg Med Chem Lett 9:3231–3236

    Article  PubMed  CAS  Google Scholar 

  30. Grant SK, Sklar JG, Cummings RT (2002) Development of novel assays for proteolytic enzymes using rhodamine-based fluorogenic substrates. J Biomol Screen 7:531–540

    Article  PubMed  CAS  Google Scholar 

  31. O’Brien MA, Daily WJ, Hesselberth PE et al (2005) Homogeneous, bioluminescent protease assays: caspase-3 as a model. J Biomol Screen 10:137–148

    Article  PubMed  Google Scholar 

  32. Moravec RA, O’Brien MA, Daily WJ et al (2009) Cell-based bioluminescent assays for all three proteasome activities in a homogeneous format. Anal Biochem 387:294–302

    Article  PubMed  CAS  Google Scholar 

  33. Lightcap ES, Mccormack TA, Pien CS et al (2000) Proteasome inhibition measurements: clinical application. Clin Chem 46:673–683

    PubMed  CAS  Google Scholar 

  34. Kisselev AF, Goldberg AL (2005) Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol 398:364–378

    Article  PubMed  CAS  Google Scholar 

  35. Kisselev AF, Callard A, Goldberg AL (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281:8582–8590

    Article  PubMed  CAS  Google Scholar 

  36. Fenteany G, Standaert RF, Lane WS et al (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268:726–731

    Article  PubMed  CAS  Google Scholar 

  37. Dick L, Cruikshank A, Grenier L et al (1996) Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin β-lactone. J Biol Chem 271:7273–7276

    Article  PubMed  CAS  Google Scholar 

  38. Dick L, Cruikshank A, Destree AT et al (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 272:182–188

    Article  PubMed  CAS  Google Scholar 

  39. Meng L, Mohan R, Kwok BHB et al (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo anti-inflammatory activity. Proc Natl Acad Sci U S A 96:10403–10408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Corey EJ, Li W-DZ (1999) Total synthesis and biological activity of lactacystin, omuralike and analogs. Chem Pharm Bull 47:1–10

    Article  PubMed  CAS  Google Scholar 

  41. Strucksberg KH, Tangavelou K, Schröder R et al (2010) Proteasomal activity in skeletal muscle: a matter of assay design, muscle type, and age. Anal Biochem 399:225–229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank our colleagues at Promega Biosciences, Michael Scurria, Laurent Bernad, Bill Dailey, and James Unch, for synthesizing the bioluminescent proteasome substrates. We are indebted to Keith Wood and Dieter Klaubert for the homogeneous, bioluminescent assay concept. We also thank Kay Rashka, Sandra Hagen, Jeri Culp, Debra Lange, Brian McNamara, Anissa Moraes, and Pam Guthmiller for translating the concepts into products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha A. O’Brien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

O’Brien, M.A., Moravec, R.A., Riss, T.L., Bulleit, R.F. (2015). Homogeneous, Bioluminescent Proteasome Assays. In: Mor, G., Alvero, A. (eds) Apoptosis and Cancer. Methods in Molecular Biology, vol 1219. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1661-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1661-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1660-3

  • Online ISBN: 978-1-4939-1661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics