Skip to main content

Identification and Validation of miRNA Target Sites Within Nontraditional miRNA Targets

  • Protocol
  • First Online:
Regulatory Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1206))

Abstract

miRNAs are endogenous small RNAs that regulate gene expression through recognition of complementary RNA sequences. While miRNAs have generally been understood to repress gene expression posttranscriptionally through recognition of 3′-untranslated regions (3′-UTRs) of mRNA transcripts, they have the potential to target additional classes of RNAs. Understanding the expanding pool of potential miRNA targets has been hindered by the lack of tools for predicting target sites within these RNAs. Here, the principles for developing computational algorithms for identifying putative miRNA target sites outside of mRNA are discussed. Laboratory techniques for validating computational miRNA target predictions are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morris KV et al (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292

    Article  PubMed  CAS  Google Scholar 

  2. Ting AH et al (2005) Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet 37:906–910

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Janowski BA et al (2005) Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nat Chem Biol 1:216–222

    Article  PubMed  CAS  Google Scholar 

  4. Li LC et al (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103:17337–17342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Janowski BA et al (2007) Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3:166–173

    Article  PubMed  CAS  Google Scholar 

  6. Younger ST, Corey DR (2009) The puzzle of RNAs that target gene promoters. Chembiochem 10:1135–1139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Janowski BA et al (2006) Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol 13:787–792

    Article  PubMed  CAS  Google Scholar 

  8. Kim DH et al (2006) Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 13:793–797

    Article  PubMed  CAS  Google Scholar 

  9. Han J, Kim D, Morris KV (2007) Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci U S A 104:12422–12427

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Schwartz JC et al (2008) Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15:842–848

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Chu Y et al (2010) Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res 38:7736–7748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Place RF et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105:1608–1613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kim DH et al (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 105:16230–16235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Younger ST, Pertsemlidis A, Corey DR (2009) Predicting potential miRNA target sites within gene promoters. Bioorg Med Chem Lett 19:3791–3794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Younger ST, Corey DR (2011) Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res 39:5682–5691. doi:10.1093/nar/gkr155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Yue X et al (2010) Transcriptional regulation by small RNAs at sequences downstream from 3′ gene termini. Nat Chem Biol 6:621–629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Younger ST, Corey DR (2011) Transcriptional regulation by miRNA mimics that target sequences downstream of gene termini. Mol Biosyst 7:2383–2388. doi:10.1039/c1mb05090g

    Article  PubMed  CAS  Google Scholar 

  18. Cheng J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154

    Article  PubMed  CAS  Google Scholar 

  19. Kapranov P et al (2005) Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res 15:987–997

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Carninci P et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  PubMed  CAS  Google Scholar 

  21. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Griffiths-Jones S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Griffiths-Jones S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Kent WJ et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Enright AJ et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    Article  PubMed  CAS  Google Scholar 

  27. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Waugh A et al (2002) RNAML: a standard syntax for exchanging RNA information. RNA 8:707–717

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Zuker M, Jacobson AB (1998) Using reliability information to annotate RNA secondary structures. RNA 4:669–679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Rehmsmeier M et al (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  CAS  Google Scholar 

  32. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  33. Meister G et al (2004) Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Orom UA, Kauppinen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141

    Article  PubMed  CAS  Google Scholar 

  35. Wahlestedt C et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 97:5633–5638

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIGMS 77253), The Robert A. Welch Foundation (I-1244), and an NIH Pharmacological Sciences Training Grant (GM07062 to S.T.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Corey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Younger, S.T., Corey, D.R. (2015). Identification and Validation of miRNA Target Sites Within Nontraditional miRNA Targets. In: Carmichael, G. (eds) Regulatory Non-Coding RNAs. Methods in Molecular Biology, vol 1206. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1369-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1369-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1368-8

  • Online ISBN: 978-1-4939-1369-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics