Skip to main content

Paradigm Shifts in Mast Cell and Basophil Biology and Function: An Emerging View of Immune Regulation in Health and Disease

  • Protocol
  • First Online:
Basophils and Mast Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1192))

Abstract

The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps, the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities towards the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ehrlich P (1877) Beitrage zur Kenntnis der Anilinfarbungen und ihrer Verwendung in der mikroskopischen Technik. Arch Mikrosk Anat 13:263–277

    Google Scholar 

  2. Ehrlich P (1878) Beitrage zur Theorie und Praxis der histologischen Farbung. 6-17-1878. Thesis, Leipzig University

    Google Scholar 

  3. Ehrlich P (1891) Farbenanalytische Untersuchungen zur Histologie und Klinik des Blutes. Hirschwald, Berlin

    Google Scholar 

  4. Ehrlich P, Lazarus A (1898) Die Anaemie, 1. Normale und pathologische Histologie des Blutes. Holder, Wien (revised and republished 1909)

    Google Scholar 

  5. Galli SJ (1993) New concepts about the mast cell. N Engl J Med 328:257–265

    CAS  PubMed  Google Scholar 

  6. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079

    CAS  PubMed  Google Scholar 

  7. Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T (2011) Nonredundant roles of basophils in immunity. Annu Rev Immunol 29:45–69

    CAS  PubMed  Google Scholar 

  8. Dvorak AM, Nabel G, Pyne K, Cantor H, Dvorak HF, Galli SJ (1982) Ultrastructural identification of the mouse basophil. Blood 59:1279–1285

    CAS  PubMed  Google Scholar 

  9. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786

    CAS  PubMed  Google Scholar 

  10. Kinet JP (1989) The high-affinity receptor for IgE. Curr Opin Immunol 2:499–505

    CAS  PubMed  Google Scholar 

  11. Min B, Paul WE (2008) Basophils and type 2 immunity. Curr Opin Hematol 15:59–63

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Falcone FH, Haas H, Gibbs BF (2000) The human basophil: a new appreciation of its role in immune responses. Blood 96:4028–4038

    CAS  PubMed  Google Scholar 

  13. Galli SJ, Tsai M (2010) Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol 40:1843–1851

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Tsai M, Grimbaldeston M, Galli SJ (2011) Mast cells and immunoregulation/immunomodulation. Adv Exp Med Biol 716:186–211

    CAS  PubMed  Google Scholar 

  15. Reber LL, Marichal T, Galli SJ (2012) New models for analyzing mast cell functions in vivo. Trends Immunol 33:613–625

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Rodewald HR, Feyerabend TB (2012) Widespread immunological functions of mast cells: fact or fiction? Immunity 37:13–24

    CAS  PubMed  Google Scholar 

  17. Honda T, Egawa G, Grabbe S, Kabashima K (2013) Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 133:303–315

    CAS  PubMed  Google Scholar 

  18. Matsumoto K, Mizukoshi K, Oyobikawa M, Ohshima H, Tagami H (2004) Establishment of an atopic dermatitis-like skin model in a hairless mouse by repeated elicitation of contact hypersensitivity that enables to conduct functional analyses of the stratum corneum with various non-invasive biophysical instruments. Skin Res Technol 10:122–129

    PubMed  Google Scholar 

  19. Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S, Köhler A, Peschke K, Vöhringer D, Waskow C, Krieg T, Müller W, Waisman A, Hartmann K, Gunzer M, Roers A (2011) Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34:973–984

    CAS  PubMed  Google Scholar 

  20. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    CAS  PubMed  Google Scholar 

  21. Hershko AY, Suzuki R, Charles N, Alvarez-Errico D, Sargent JL, Laurence A, Rivera J (2011) Mast cell interleukin-2 production contributes to suppression of chronic allergic dermatitis. Immunity 35:562–571

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Norman MU, Hwang J, Hulliger S, Bonder CS, Yamanouchi J, Santamaria P, Kubes P (2008) Mast cells regulate the magnitude and the cytokine microenvironment of the contact hypersensitivity response. Am J Pathol 172:1638–1649

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Man MQ, Hatano Y, Lee SH, Man M, Chang S, Feingold KR, Leung DY, Holleran W, Uchida Y, Elias PM (2008) Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges. J Invest Dermatol 128:79–86

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Hart PH, Grimbaldeston MA, Swift GJ, Jaksic A, Noonan FP, Finlay-Jones JJ (1998) Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med 187:2045–2053

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Depinay N, Hacini F, Beghdadi W, Peronet R, Mecheri S (2006) Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. J Immunol 176:4141–4146

    CAS  PubMed  Google Scholar 

  26. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104

    CAS  PubMed  Google Scholar 

  27. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452

    CAS  PubMed  Google Scholar 

  28. Costa JJ, Weller PF, Galli SJ (1997) The cells of the allergic response: mast cells, basophils, and eosinophils. JAMA 278:1815–1822

    CAS  PubMed  Google Scholar 

  29. Dvorak AM, Seder RA, Paul WE, Kissell-Rainville S, Plaut M, Galli SJ (1993) Ultrastructural characteristics of Fc epsilon R-positive basophils in the spleen and bone marrow of mice immunized with goat anti-mouse IgD antibody. Lab Invest 68:708–715

    CAS  PubMed  Google Scholar 

  30. Seder RA, Paul WE, Dvorak AM, Sharkis SJ, Kagey-Sobotka A, Niv Y, Finkelman FD, Barbieri SA, Galli SJ, Plaut M (1991) Mouse splenic and bone marrow cell populations that express high-affinity Fc epsilon receptors and produce interleukin 4 are highly enriched in basophils. Proc Natl Acad Sci U S A 88:2835–2839

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Seder RA, Plaut M, Barbieri S, Urban J Jr, Finkelman FD, Paul WE (1991) Purified Fc epsilon R+ bone marrow and splenic non-B, non-T cells are highly enriched in the capacity to produce IL-4 in response to immobilized IgE, IgG2a, or ionomycin. J Immunol 147:903–909

    CAS  PubMed  Google Scholar 

  32. Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R, Voehringer D (2010) Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33:364–374

    CAS  PubMed  Google Scholar 

  33. Wada T, Ishiwata K, Koseki H, Ishikura T, Ugajin T, Ohnuma N, Obata K, Ishikawa R, Yoshikawa S, Mukai K, Kawano Y, Minegishi Y, Yokozeki H, Watanabe N, Karasuyama H (2010) Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Invest 120:2867–2875

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Min B, Prout M, Hu-Li J, Zhu J, Jankovic D, Morgan ES, Urban JF Jr, Dvorak AM, Finkelman FD, LeGros G, Paul WE (2004) Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J Exp Med 200:507–517

    CAS  PubMed Central  PubMed  Google Scholar 

  35. van Panhuys N, Prout M, Forbes E, Min B, Paul WE, Le Gros G (2011) Basophils are the major producers of IL-4 during primary helminth infection. J Immunol 186:2719–2728

    PubMed Central  PubMed  Google Scholar 

  36. Voehringer D, Shinkai K, Locksley RM (2004) Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20:267–277

    CAS  PubMed  Google Scholar 

  37. Ohnmacht C, Voehringer D (2010) Basophils protect against reinfection with hookworms independently of mast cells and memory Th2 cells. J Immunol 184:344–350

    CAS  PubMed  Google Scholar 

  38. Ohnmacht C, Voehringer D (2009) Basophil effector function and homeostasis during helminth infection. Blood 113:2816–2825

    CAS  PubMed  Google Scholar 

  39. Voehringer D, Reese TA, Huang X, Shinkai K, Locksley RM (2006) Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J Exp Med 203:1435–1446

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Lantz CS, Min B, Tsai M, Chatterjea D, Dranoff G, Galli SJ (2008) IL-3 is required for increases in blood basophils in nematode infection in mice and can enhance IgE-dependent IL-4 production by basophils in vitro. Lab Invest 88:1134–1142

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Rooijen N, Comeau MR, Pearce EJ, Laufer TM, Artis D (2009) MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10:697–705

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y, Nakanishi K (2009) Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol 10:706–712

    CAS  PubMed  Google Scholar 

  43. Chen K, Xu W, Wilson M, He B, Miller NW, Bengtén E, Edholm ES, Santini PA, Rath P, Chiu A, Cattalini M, Litzman J, B Bussel J, Huang B, Meini A, Riesbeck K, Cunningham-Rundles C, Plebani A, Cerutti A (2009) Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat Immunol 10:889–898

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Charles N, Hardwick D, Daugas E, Illei GG, Rivera J (2010) Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med 16:701–707

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Charles N, Dema B, Rivera J (2012) Reply to: Basophils from humans with systemic lupus erythematosus do not express MHC-II. Nat Med 18:489–490

    CAS  Google Scholar 

  46. Charles N, Rivera J (2011) Basophils and autoreactive IgE in the pathogenesis of systemic lupus erythematosus. Curr Allergy Asthma Rep 11:378–387

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10:713–720

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Caughey GH (2011) Mast cell proteases as protective and inflammatory mediators. Adv Exp Med Biol 716:212–234

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Akahoshi M, Song CH, Piliponsky AM, Metz M, Guzzetta A, Abrink M, Schlenner SM, Feyerabend TB, Rodewald HR, Pejler G, Tsai M, Galli SJ (2011) Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. J Clin Invest 121:4180–4191

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Maurer M, Wedemeyer J, Metz M, Piliponsky AM, Weller K, Chatterjea D, Clouthier DE, Yanagisawa MM, Tsai M, Galli SJ (2004) Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 432:512–516

    CAS  PubMed  Google Scholar 

  51. Metz M, Piliponsky AM, Chen CC, Lammel V, Abrink M, Pejler G, Tsai M, Galli SJ (2006) Mast cells can enhance resistance to snake and honeybee venoms. Science 313:526–530

    CAS  PubMed  Google Scholar 

  52. Malaviya R, Ikeda T, Ross E, Abraham SN (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381:77–80

    CAS  PubMed  Google Scholar 

  53. Piliponsky AM, Chen CC, Grimbaldeston MA, Burns-Guydish SM, Hardy J, Kalesnikoff J, Contag CH, Tsai M, Galli SJ (2010) Mast cell-derived TNF can exacerbate mortality during severe bacterial infections in C57BL/6-KitW-sh/W-sh mice. Am J Pathol 176:926–938

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Piliponsky AM, Chen CC, Nishimura T, Metz M, Rios EJ, Dobner PR, Wada E, Wada K, Zacharias S, Mohanasundaram UM, Faix JD, Abrink M, Pejler G, Pearl RG, Tsai M, Galli SJ (2008) Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med 14:392–398

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Cochrane DE, Carraway RE, Boucher W, Feldberg RS (1991) Rapid degradation of neurotensin by stimulated rat mast cells. Peptides 12:1187–1194

    CAS  PubMed  Google Scholar 

  56. Piliponsky AM, Chen CC, Rios EJ, Treuting PM, Lahiri A, Abrink M, Pejler G, Tsai M, Galli SJ (2012) The chymase mouse mast cell protease 4 degrades TNF, limits inflammation, and promotes survival in a model of sepsis. Am J Pathol 181:875–886

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Thakurdas SM, Melicoff E, Sansores-Garcia L, Moreira DC, Petrova Y, Stevens RL, Adachi R (2007) The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections. J Biol Chem 282:20809–20815

    CAS  PubMed  Google Scholar 

  58. Hendrix S, Kramer P, Pehl D, Warnke K, Boato F, Nelissen S, Lemmens E, Pejler G, Metz M, Siebenhaar F, Maurer M (2013) Mast cells protect from post-traumatic brain inflammation by the mast cell-specific chymase mouse mast cell protease-4. FASEB J 27:920–929

    CAS  PubMed  Google Scholar 

  59. Waern I, Lundequist A, Pejler G, Wernersson S (2013) Mast cell chymase modulates IL-33 levels and controls allergic sensitization in dust-mite induced airway inflammation. Mucosal Immunol 6(5):911–920

    CAS  PubMed  Google Scholar 

  60. Waern I, Karlsson I, Thorpe M, Schlenner SM, Feyerabend TB, Rodewald HR, Åbrink M, Hellman L, Pejler G, Wernersson S (2012) Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis. Biol Chem 393:1555–1567

    CAS  PubMed  Google Scholar 

  61. Hershko AY, Charles N, Olivera A, Alvarez-Errico D, Rivera J (2012) Cutting edge: persistence of increased mast cell numbers in tissues links dermatitis to enhanced airway disease in a mouse model of atopy. J Immunol 188:531–535

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hahn EL, Bacharier LB (2005) The atopic march: the pattern of allergic disease development in childhood. Immunol Allergy Clin North Am 25:231–246, v

    PubMed  Google Scholar 

  63. McLachlan JB, Shelburne CP, Hart JP, Pizzo SV, Goyal R, Brooking-Dixon R, Staats HF, Abraham SN (2008) Mast cell activators: a new class of highly effective vaccine adjuvants. Nat Med 14:536–541

    CAS  PubMed  Google Scholar 

  64. Paananen K, Kovanen PT (1994) Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules. J Biol Chem 269:2023–2031

    CAS  PubMed  Google Scholar 

  65. Pulendran B, Ono SJ (2008) A shot in the arm for mast cells. Nat Med 14:489–490

    CAS  PubMed  Google Scholar 

  66. Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12:1035–1044

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Chmelar J, Chung KJ, Chavakis T (2013) The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance. Thromb Haemost 109:399–406

    CAS  PubMed  Google Scholar 

  68. Xu JM, Shi GP (2012) Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev 33:71–108

    PubMed Central  PubMed  Google Scholar 

  69. Anand P, Singh B, Jaggi AS, Singh N (2012) Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedebergs Arch Pharmacol 385:657–670

    CAS  PubMed  Google Scholar 

  70. Altintas MM, Nayer B, Walford EC, Johnson KB, Gaidosh G, Reiser J, De La Cruz-Munoz N, Ortega LM, Nayer A (2012) Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice. Lipids Health Dis 11:21

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Liu J, Divoux A, Sun J, Zhang J, Clement K, Glickman JN, Sukhova GK, Wolters PJ, Du J, Gorgun CZ, Doria A, Libby P, Blumberg RS, Kahn BB, Hotamisligil GS, Shi GP (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15:940–945

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Tanaka A, Nomura Y, Matsuda A, Ohmori K, Matsuda H (2011) Mast cells function as an alternative modulator of adipogenesis through 15-deoxy-delta-12, 14-prostaglandin J2. Am J Physiol Cell Physiol 301:C1360–C1367

    CAS  PubMed  Google Scholar 

  73. Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N, Aissat A, Arock M, Guerre-Millo M, Clément K (2012) Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J Clin Endocrinol Metab 97:E1677–E1685

    CAS  PubMed  Google Scholar 

  74. Wang X, Chen H, Zhang M, Liu Z (2012) Roles of Mast Cells and Monocyte Chemoattractant Protein-1 in the Renal Injury of Obesity-Related Glomerulopathy. Am J Med Sci 346(4):295–301

    Google Scholar 

  75. Fenger RV, Linneberg A, Vidal C, Vizcaino L, Husemoen LL, Aadahl M, Gonzalez-Quintela A (2012) Determinants of serum tryptase in a general population: the relationship of serum tryptase to obesity and asthma. Int Arch Allergy Immunol 157:151–158

    CAS  PubMed  Google Scholar 

  76. Ward BR, Arslanian SA, Andreatta E, Schwartz LB (2012) Obesity is not linked to increased whole-body mast cell burden in children. J Allergy Clin Immunol 129:1164–1166

    PubMed Central  PubMed  Google Scholar 

  77. Poglio S, De Toni-Costes F, Arnaud E, Laharrague P, Espinosa E, Casteilla L, Cousin B (2010) Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells 28:2065–2072

    CAS  PubMed  Google Scholar 

  78. Oka T, Kalesnikoff J, Starkl P, Tsai M, Galli SJ (2012) Evidence questioning cromolyn’s effectiveness and selectivity as a ‘mast cell stabilizer’ in mice. Lab Invest 92:1472–1482

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Shi MA, Shi GP (2012) Different roles of mast cells in obesity and diabetes: lessons from experimental animals and humans. Front Immunol 3:7

    PubMed Central  PubMed  Google Scholar 

  80. Iyer A, Lim J, Poudyal H, Reid RC, Suen JY, Webster J, Prins JB, Whitehead JP, Fairlie DP, Brown L (2012) An inhibitor of phospholipase A2 group IIA modulates adipocyte signaling and protects against diet-induced metabolic syndrome in rats. Diabetes 61:2320–2329

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kim S, Moustaid-Moussa N (2000) Secretory, endocrine and autocrine/paracrine function of the adipocyte. J Nutr 130:3110S–3115S

    CAS  PubMed  Google Scholar 

  82. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815

    CAS  PubMed  Google Scholar 

  83. Jeziorska M, McCollum C, Woolley DE (1997) Mast cell distribution, activation, and phenotype in atherosclerotic lesions of human carotid arteries. J Pathol 182:115–122

    CAS  PubMed  Google Scholar 

  84. Kaartinen M, Penttila A, Kovanen PT (1994) Mast cells of two types differing in neutral protease composition in the human aortic intima. Demonstration of tryptase- and tryptase/chymase-containing mast cells in normal intimas, fatty streaks, and the shoulder region of atheromas. Arterioscler Thromb 14:966–972

    CAS  PubMed  Google Scholar 

  85. Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92:1084–1088

    CAS  PubMed  Google Scholar 

  86. Ramalho LS, Oliveira LF, Cavellani CL, Ferraz ML, de Oliveira FA, Miranda Correa RR, de Paula Antunes Teixeira V, De Lima Pereira SA (2013) Role of mast cell chymase and tryptase in the progression of atherosclerosis: study in 44 autopsied cases. Ann Diagn Pathol 17:28–31

    PubMed  Google Scholar 

  87. Bot I, Bot M, van Heiningen SH, van Santbrink PJ, Lankhuizen IM, Hartman P, Gruener S, Hilpert H, van Berkel TJ, Fingerle J, Biessen EA (2011) Mast cell chymase inhibition reduces atherosclerotic plaque progression and improves plaque stability in ApoE-/- mice. Cardiovasc Res 89:244–252

    CAS  PubMed  Google Scholar 

  88. Heikkila HM, Trosien J, Metso J, Jauhiainen M, Pentikainen MO, Kovanen PT, Lindstedt KA (2010) Mast cells promote atherosclerosis by inducing both an atherogenic lipid profile and vascular inflammation. J Cell Biochem 109:615–623

    PubMed  Google Scholar 

  89. Sun J, Sukhova GK, Wolters PJ, Yang M, Kitamoto S, Libby P, MacFarlane LA, Mallen-St Clair J, Shi GP (2007) Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13:719–724

    CAS  PubMed  Google Scholar 

  90. Smith DD, Tan X, Raveendran VV, Tawfik O, Stechschulte DJ, Dileepan KN (2012) Mast cell deficiency attenuates progression of atherosclerosis and hepatic steatosis in apolipoprotein E-null mice. Am J Physiol Heart Circ Physiol 302:H2612–H2621

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Bot I, Biessen EA (2011) Mast cells in atherosclerosis. Thromb Haemost 106:820–826

    CAS  PubMed  Google Scholar 

  92. Bot I, de Jager SC, Zernecke A, Lindstedt KA, van Berkel TJ, Weber C, Biessen EA (2007) Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation 115:2516–2525

    CAS  PubMed  Google Scholar 

  93. Zhang J, Alcaide P, Liu L, Sun J, He A, Luscinskas FW, Shi GP (2011) Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils. PLoS One 6:e14525

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Sun J, Sukhova GK, Yang M, Wolters PJ, MacFarlane LA, Libby P, Sun C, Zhang Y, Liu J, Ennis TL, Knispel R, Xiong W, Thompson RW, Baxter BT, Shi GP (2007) Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest 117:3359–3368

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Lappalainen J, Lindstedt KA, Oksjoki R, Kovanen PT (2011) OxLDL-IgG immune complexes induce expression and secretion of proatherogenic cytokines by cultured human mast cells. Atherosclerosis 214:357–363

    CAS  PubMed  Google Scholar 

  96. Wang J, Cheng X, Xiang MX, Alanne-Kinnunen M, Wang JA, Chen H, He A, Sun X, Lin Y, Tang TT, Tu X, Sjöberg S, Sukhova GK, Liao YH, Conrad DH, Yu L, Kawakami T, Kovanen PT, Libby P, Shi GP (2011) IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe-/- mice. J Clin Invest 121:3564–3577

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339:286–291

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Oleinika K, Nibbs RJ, Graham GJ, Fraser AR (2013) Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171:36–45

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Chang DZ (2012) Mast cells in pancreatic ductal adenocarcinoma. Oncoimmunology 1:754–755

    PubMed Central  PubMed  Google Scholar 

  100. Cheema VS, Ramesh V, Balamurali PD (2012) The relevance of mast cells in oral squamous cell carcinoma. J Clin Diagn Res 6:1803–1807

    PubMed Central  PubMed  Google Scholar 

  101. de Souza DA Jr, Toso VD, Campos MR, Lara VS, Oliver C, Jamur MC (2012) Expression of mast cell proteases correlates with mast cell maturation and angiogenesis during tumor progression. PLoS One 7:e40790

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, Lee DM, Zhang G, Glickman JN, Shin K, Rao VP, Poutahidis T, Weissleder R, McNagny KM, Khazaie K (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 104:19977–19982

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796:19–26

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Mangia A, Malfettone A, Rossi R, Paradiso A, Ranieri G, Simone G, Resta L (2011) Tissue remodelling in breast cancer: human mast cell tryptase as an initiator of myofibroblast differentiation. Histopathology 58:1096–1106

    PubMed  Google Scholar 

  105. Nelissen S, Lemmens E, Geurts N, Kramer P, Maurer M, Hendriks J, Hendrix S (2013) The role of mast cells in neuroinflammation. Acta Neuropathol 125:637–650

    CAS  PubMed  Google Scholar 

  106. Pittoni P, Tripodo C, Piconese S, Mauri G, Parenza M, Rigoni A, Sangaletti S, Colombo MP (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71:5987–5997

    CAS  PubMed  Google Scholar 

  107. Rabenhorst A, Schlaak M, Heukamp LC, Forster A, Theurich S, von Bergwelt-Baildon M, Büttner R, Kurschat P, Mauch C, Roers A, Hartmann K (2012) Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood 120:2042–2054

    CAS  PubMed  Google Scholar 

  108. Ribatti D, Crivellato E (2011) Mast cells, angiogenesis and cancer. Adv Exp Med Biol 716:270–288

    CAS  PubMed  Google Scholar 

  109. Souza LR, Fonseca-Silva T, Santos CC, Oliveira MV, Correa-Oliveira R, Guimaraes AL, De Paula AM (2010) Association of mast cell, eosinophil leucocyte and microvessel densities in actinic cheilitis and lip squamous cell carcinoma. Histopathology 57:796–805

    PubMed  Google Scholar 

  110. Staser K, Yang FC, Clapp DW (2012) Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu Rev Pathol 7:469–495

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Cai SW, Yang SZ, Gao J, Pan K, Chen JY, Wang YL, Wei LX, Dong JH (2011) Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery 149:576–584

    PubMed  Google Scholar 

  112. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218

    CAS  PubMed  Google Scholar 

  114. Xia Q, Wu XJ, Zhou Q, Jing Z, Hou JH, Pan ZZ, Zhang XS (2011) No relationship between the distribution of mast cells and the survival of stage IIIB colon cancer patients. J Transl Med 9:88

    PubMed Central  PubMed  Google Scholar 

  115. Starkey JR, Crowle PK, Taubenberger S (1988) Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42:48–52

    CAS  PubMed  Google Scholar 

  116. Chang DZ, Ma Y, Ji B, Wang H, Deng D, Liu Y, Logsdon CD, Hwu P (2011) Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin Cancer Res 17:7015–7023

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Wasiuk A, Dalton DK, Schpero WL, Stan RV, Conejo-Garcia JR, Noelle RJ (2012) Mast cells impair the development of protective anti-tumor immunity. Cancer Immunol Immunother 61:2273–2282

    CAS  PubMed  Google Scholar 

  118. Oldford SA, Haidl ID, Howatt MA, Leiva CA, Johnston B, Marshall JS (2010) A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. J Immunol 185:7067–7076

    CAS  PubMed  Google Scholar 

  119. Murata T, Aritake K, Matsumoto S, Kamauchi S, Nakagawa T, Hori M, Momotani E, Urade Y, Ozaki H (2011) Prostagladin D2 is a mast cell-derived antiangiogenic factor in lung carcinoma. Proc Natl Acad Sci U S A 108:19802–19807

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Sinnamon MJ, Carter KJ, Sims LP, Lafleur B, Fingleton B, Matrisian LM (2008) A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 29:880–886

    CAS  PubMed  Google Scholar 

  121. Pittoni P, Piconese S, Tripodo C, Colombo MP (2011) Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene 30:757–769

    CAS  PubMed  Google Scholar 

  122. Brown MA, Hatfield JK (2012) Mast Cells are Important Modifiers of Autoimmune Disease: With so Much Evidence, Why is There Still Controversy? Front Immunol 3:147

    PubMed Central  PubMed  Google Scholar 

  123. Costanza M, Colombo MP, Pedotti R (2012) Mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci 13:15107–15125

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Mican JM, Metcalfe DD (1990) Arthritis and mast cell activation. J Allergy Clin Immunol 86:677–683

    CAS  PubMed  Google Scholar 

  125. Nakano S, Mishiro T, Takahara S, Yokoi H, Hamada D, Yukata K, Takata Y, Goto T, Egawa H, Yasuoka S, Furouchi H, Hirasaka K, Nikawa T, Yasui N (2007) Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin Rheumatol 26:1284–1292

    PubMed  Google Scholar 

  126. Noordenbos T, Yeremenko N, Gofita I, van de Sande M, Tak PP, Caňete JD, Baeten D (2012) Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum 64:99–109

    CAS  PubMed  Google Scholar 

  127. Tetlow LC, Woolley DE (1995) Distribution, activation and tryptase/chymase phenotype of mast cells in the rheumatoid lesion. Ann Rheum Dis 54:549–555

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Pimentel TA, Sampaio AL, D’Acquisto F, Perretti M, Oliani SM (2011) An essential role for mast cells as modulators of neutrophils influx in collagen-induced arthritis in the mouse. Lab Invest 91:33–42

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Shin K, Gurish MF, Friend DS, Pemberton AD, Thornton EM, Miller HR, Lee DM (2006) Lymphocyte-independent connective tissue mast cells populate murine synovium. Arthritis Rheum 54:2863–2871

    CAS  PubMed  Google Scholar 

  130. Shiota N, Shimoura K, Okunishi H (2006) Pathophysiological role of mast cells in collagen-induced arthritis: study with a cysteinyl leukotriene receptor antagonist, montelukast. Eur J Pharmacol 548:158–166

    CAS  PubMed  Google Scholar 

  131. Kneilling M, Hultner L, Pichler BJ, Mailhammer R, Morawietz L, Solomon S, Eichner M, Sabatino J, Biedermann T, Krenn V, Weber WA, Illges H, Haubner R, Röcken M (2007) Targeted mast cell silencing protects against joint destruction and angiogenesis in experimental arthritis in mice. Arthritis Rheum 56:1806–1816

    CAS  PubMed  Google Scholar 

  132. Juurikivi A, Sandler C, Lindstedt KA, Kovanen PT, Juutilainen T, Leskinen MJ, Mäki T, Eklund KK (2005) Inhibition of c-kit tyrosine kinase by imatinib mesylate induces apoptosis in mast cells in rheumatoid synovia: a potential approach to the treatment of arthritis. Ann Rheum Dis 64:1126–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Eklund KK, Joensuu H (2003) Treatment of rheumatoid arthritis with imatinib mesylate: clinical improvement in three refractory cases. Ann Med 35:362–367

    CAS  PubMed  Google Scholar 

  134. Mancardi DA, Jonsson F, Iannascoli B, Khun H, Van Rooijen N, Huerre M, Daëron M, Bruhns P (2011) Cutting Edge: The murine high-affinity IgG receptor FcgammaRIV is sufficient for autoantibody-induced arthritis. J Immunol 186:1899–1903

    CAS  PubMed  Google Scholar 

  135. Nigrovic PA, Binstadt BA, Monach PA, Johnsen A, Gurish M, Iwakura Y, Benoist C, Mathis D, Lee DM (2007) Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1. Proc Natl Acad Sci U S A 104:2325–2330

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Nigrovic PA, Malbec O, Lu B, Markiewski MM, Kepley C, Gerard N, Daëron M, Lee DM (2010) C5a receptor enables participation of mast cells in immune complex arthritis independently of Fcgamma receptor modulation. Arthritis Rheum 62:3322–3333

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Tsuboi N, Ernandez T, Li X, Nishi H, Cullere X, Mekala D, Hazen M, Köhl J, Lee DM, Mayadas TN (2011) Regulation of human neutrophil Fcgamma receptor IIa by C5a receptor promotes inflammatory arthritis in mice. Arthritis Rheum 63:467–478

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Zhou JS, Xing W, Friend DS, Austen KF, Katz HR (2007) Mast cell deficiency in Kit(W-sh) mice does not impair antibody-mediated arthritis. J Exp Med 204:2797–2802

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Pitman N, Asquith DL, Murphy G, Liew FY, McInnes IB (2011) Collagen-induced arthritis is not impaired in mast cell-deficient mice. Ann Rheum Dis 70:1170–1171

    PubMed  Google Scholar 

  140. Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, Radermacher P, Möller P, Benoist C, Mathis D, Fehling HJ, Rodewald HR (2011) Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35:832–844

    CAS  PubMed  Google Scholar 

  141. Rajasekaran N, Solomon S, Watanabe T, Ohtsu H, Gajda M, Bräuer R, Illges H (2009) Histidine decarboxylase but not histamine receptor 1 or 2 deficiency protects from K/BxN serum-induced arthritis. Int Immunol 21:1263–1268

    CAS  PubMed  Google Scholar 

  142. McNeil HP, Shin K, Campbell IK, Wicks IP, Adachi R, Lee DM, Stevens RL (2008) The mouse mast cell-restricted tetramer-forming tryptases mouse mast cell protease 6 and mouse mast cell protease 7 are critical mediators in inflammatory arthritis. Arthritis Rheum 58:2338–2346

    PubMed  Google Scholar 

  143. Shin K, Nigrovic PA, Crish J, Boilard E, McNeil HP, Larabee KS, Adachi R, Gurish MF, Gobezie R, Stevens RL, Lee DM (2009) Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol 182:647–656

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Magnusson SE, Pejler G, Kleinau S, Abrink M (2009) Mast cell chymase contributes to the antibody response and the severity of autoimmune arthritis. FASEB J 23:875–882

    CAS  PubMed  Google Scholar 

  145. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K, Holers VM, Walport M, Gerard C, Ezekowitz A, Carroll MC, Brenner M, Weissleder R, Verbeek JS, Duchatelle V, Degott C, Benoist C, Mathis D (2002) Arthritis critically dependent on innate immune system players. Immunity 16:157–168

    CAS  PubMed  Google Scholar 

  146. Xu D, Jiang HR, Kewin P, Li Y, Mu R, Fraser AR, Pitman N, Kurowska-Stolarska M, McKenzie AN, McInnes IB, Liew FY (2008) IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc Natl Acad Sci U S A 105:10913–10918

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Millauer N, Zuercher AW, Miescher SM, Gerber HA, Seitz M, Stadler BM (1999) High IgE in rheumatoid arthritis (RA) patients is complexed with anti-IgE autoantibodies. Clin Exp Immunol 115:183–188

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Kikuchi Y, Kaplan AP (2001) Mechanisms of autoimmune activation of basophils in chronic urticaria. J Allergy Clin Immunol 107:1056–1062

    CAS  PubMed  Google Scholar 

  149. Miller JF (1975) Cellular basis of the immune response. Acta Endocrinol Suppl (Copenh) 194:55–76

    CAS  Google Scholar 

  150. Nakae S, Suto H, Iikura M, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176:2238–2248

    CAS  PubMed  Google Scholar 

  151. Mekori YA (2004) The mastocyte: the “other” inflammatory cell in immunopathogenesis. J Allergy Clin Immunol 114:52–57

    CAS  PubMed  Google Scholar 

  152. Bachelet I, Levi-Schaffer F, Mekori YA (2006) Mast cells: not only in allergy. Immunol Allergy Clin North Am 26:407–425

    PubMed  Google Scholar 

  153. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Inamura N, Mekori YA, Bhattacharyya SP, Bianchine PJ, Metcalfe DD (1998) Induction and enhancement of Fc(epsilon)RI-dependent mast cell degranulation following coculture with activated T cells: dependency on ICAM-1- and leukocyte function-associated antigen (LFA)-1-mediated heterotypic aggregation. J Immunol 160:4026–4033

    CAS  PubMed  Google Scholar 

  155. Frandji P, Tkaczyk C, Oskeritzian C, David B, Desaymard C, Mecheri S (1996) Exogenous and endogenous antigens are differentially presented by mast cells to CD4+ T lymphocytes. Eur J Immunol 26:2517–2528

    CAS  PubMed  Google Scholar 

  156. Kambayashi T, Allenspach EJ, Chang JT, Zou T, Shoag JE, Reiner SL, Caton AJ, Koretzky GA (2009) Inducible MHC class II expression by mast cells supports effector and regulatory T cell activation. J Immunol 182:4686–4695

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Gaudenzio N, Espagnolle N, Mars LT, Liblau R, Valitutti S, Espinosa E (2009) Cell-cell cooperation at the T helper cell/mast cell immunological synapse. Blood 114:4979–4988

    CAS  PubMed  Google Scholar 

  158. Stelekati E, Bahri R, D’Orlando O, Orinska Z, Mittrucker HW, Langenhaun R, Glatzel M, Bollinger A, Paus R, Bulfone-Paus S (2009) Mast cell-mediated antigen presentation regulates CD8+ T cell effector functions. Immunity 31:665–676

    CAS  PubMed  Google Scholar 

  159. Frossi B, D’Inca F, Crivellato E, Sibilano R, Gri G, Mongillo M, Danelli L, Maggi L, Pucillo CE (2011) Single-cell dynamics of mast cell-CD4+ CD25+ regulatory T cell interactions. Eur J Immunol 41:1872–1882

    CAS  PubMed  Google Scholar 

  160. Frossi B, Gri G, Tripodo C, Pucillo C (2010) Exploring a regulatory role for mast cells: ‘MCregs’? Trends Immunol 31:97–102

    CAS  PubMed  Google Scholar 

  161. Gri G, Piconese S, Frossi B, Manfroi V, Merluzzi S, Tripodo C, Viola A, Odom S, Rivera J, Colombo MP, Pucillo CE (2008) CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29:771–781

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Piconese S, Gri G, Tripodo C, Musio S, Gorzanelli A, Frossi B, Pedotti R, Pucillo CE, Colombo MP (2009) Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114:2639–2648

    CAS  PubMed  Google Scholar 

  163. Sibilano R, Frossi B, Suzuki R, D’Inca F, Gri G, Piconese S, Colombo MP, Rivera J, Pucillo CE (2012) Modulation of FcepsilonRI-dependent mast cell response by OX40L via Fyn, PI3K, and RhoA. J Allergy Clin Immunol 130(751–760):e752

    Google Scholar 

  164. Sibilano R, Gri G, Frossi B, Tripodo C, Suzuki R, Rivera J, MacDonald AS, Pucillo CE (2011) Technical advance: soluble OX40 molecule mimics regulatory T cell modulatory activity on FcepsilonRI-dependent mast cell degranulation. J Leukoc Biol 90:831–838

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Tripodo C, Gri G, Piccaluga PP, Frossi B, Guarnotta C, Piconese S, Franco G, Vetri V, Pucillo CE, Florena AM, Colombo MP, Pileri SA (2010) Mast cells and Th17 cells contribute to the lymphoma-associated pro-inflammatory microenvironment of angioimmunoblastic T-cell lymphoma. Am J Pathol 177:792–802

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Merluzzi S, Frossi B, Gri G, Parusso S, Tripodo C, Pucillo C (2010) Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells. Blood 115:2810–2817

    CAS  PubMed  Google Scholar 

  167. Sokol CL, Barton GM, Farr AG, Medzhitov R (2008) A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9:310–318

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, Murthy N, Kepler TB, Malissen B, Pulendran B (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11:608–617

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA, Kool M, Muskens F, Lambrecht BN (2010) Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 207:2097–2111

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Rodriguez Gomez M, Talke Y, Goebel N, Hermann F, Reich B, Mack M (2010) Basophils support the survival of plasma cells in mice. J Immunol 185:7180–7185

    PubMed  Google Scholar 

  171. Charles N, Watford WT, Ramos HL, Hellman L, Oettgen HC, Gomez G, Ryan JJ, O’Shea JJ, Rivera J (2009) Lyn kinase controls basophil GATA-3 transcription factor expression and induction of Th2 cell differentiation. Immunity 30:533–543

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Denzel A, Maus UA, Rodriguez Gomez M, Moll C, Niedermeier M, Winter C, Maus R, Hollingshead S, Briles DE, Kunz-Schughart LA, Talke Y, Mack M (2008) Basophils enhance immunological memory responses. Nat Immunol 9:733–742

    CAS  PubMed  Google Scholar 

  173. Wakahara K, Baba N, Van VQ, Begin P, Rubio M, Ferraro P, Panzini B, Wassef R, Lahaie R, Caussignac Y, Tamaz R, Richard C, Soucy G, Delespesse G, Sarfati M (2012) Human basophils interact with memory T cells to augment Th17 responses. Blood 120:4761–4771

    CAS  PubMed  Google Scholar 

  174. Wakahara K, Van VQ, Baba N, Begin P, Rubio M, Delespesse G, Sarfati M (2013) Basophils are recruited to inflamed lungs and exacerbate memory Th2 responses in mice and humans. Allergy 68:180–189

    CAS  PubMed  Google Scholar 

  175. Goldszmid RS, Trinchieri G (2012) The price of immunity. Nat Immunol 13:932–938

    CAS  PubMed  Google Scholar 

  176. Rivera J, Tessarollo L (2008) Genetic background and the dilemma of translating mouse studies to humans. Immunity 28:1–4

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Olivera, A., Rivera, J. (2014). Paradigm Shifts in Mast Cell and Basophil Biology and Function: An Emerging View of Immune Regulation in Health and Disease. In: Gibbs, B., Falcone, F. (eds) Basophils and Mast Cells. Methods in Molecular Biology, vol 1192. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1173-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1173-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1172-1

  • Online ISBN: 978-1-4939-1173-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics