Skip to main content

Analysis of Nanoparticle-Induced DNA Damage by the Comet Assay

  • Protocol
  • First Online:
Genotoxicity and DNA Repair

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The rapid and enormous development of nanotechnology has been accompanied by a deep concern for the effects that nanoparticles may have on human health and the environment. In this context, it is essential to assess the ability of nanoparticles to cause DNA damage. Single cell gel electrophoresis assay (comet assay) is widely used for evaluating nanoparticle-induced DNA damage in cells and is the most used assay for genotoxicity testing of nanomaterial. Here, we describe the standard alkaline version of the comet assay, both in vitro and in vivo, as well as the lesion-specific enzyme-modified comet assay (for detection of oxidized DNA lesions) to test nanoparticles. We also highlight critical points that need to be taken into consideration when assessing nanomaterial genotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Knaapen AM, Borm PJA, Albrecht C et al (2004) Inhaled particles and lung cancer. Part A: mechanisms. Int J Cancer 109:799–809

    Article  CAS  PubMed  Google Scholar 

  2. Donaldson K, Poland CA, Schins RPF (2010) Possible genotoxic mechanisms of nanoparticles: criteria for improved test strategies. Nanotoxicology 4:414–420

    Article  CAS  PubMed  Google Scholar 

  3. Magdolenova Z, Collins AR, Kumar A et al (2013) Mechanisms of genotoxicity. Review of recent in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278. doi:10.3109/17435390.2013.773464

    Article  PubMed  Google Scholar 

  4. Bowman L, Castranova V, Ding M (2012) Single cell gel electrophoresis assay (comet assay) for evaluating nanoparticles-induced DNA damage in cells. Methods Mol Biol 906: 415–422

    CAS  PubMed  Google Scholar 

  5. Karlsson HL (2010) The comet assay in nanotoxicology research. Anal Bioanal Chem 398: 651–666

    Article  CAS  PubMed  Google Scholar 

  6. Alenius H, Catalán J, Lindberg H et al (2014) Nanomaterials and human health. In: Vogel U, Savolainen K, Wu Q, van Tongeren M, Brouwer D, Berges M (eds) Handbook of nanosafety. Measurement, exposure and toxicology. Academic, San Diego

    Google Scholar 

  7. Dusinska M, Collins AR (1996) Detection of oxidised purines and UV-induced photoproducts in DNA, by inclusion of lesion-specific enzymes in the comet assay (single cell gel electrophoresis). Alternatives Lab Anim 24: 405–411

    Google Scholar 

  8. Magdolenova Z, Drlickova M, Henjum K, et al. (2014) Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology (in press)

    Google Scholar 

  9. Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23:207–21

    Article  CAS  PubMed  Google Scholar 

  10. Doak SH, Manshian B, Jenkins GJS et al (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 745:104–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lovell DP, Omori T (2008) Statistical issues in the use of the comet assay. Mutagenesis 23: 171–182

    Article  CAS  PubMed  Google Scholar 

  12. Harris G, Palosaari T, Magdolenova Z, et al. (2014) Iron oxide nanoparticle toxicity testing using high throughput analysis and high content imaging. Nanotoxicology (in press)

    Google Scholar 

  13. Dusinska M, Fjellsbø LM, Magdolenova Z et al (2011) Safety of nanomaterial in nanomedicine. In: Hunter RJ, Preedy VR (eds) Nanomedicine in health and disease. CRC, Boca Raton

    Google Scholar 

  14. Dusinska M, Rundén-Pran E, Carreira SC et al (2012) In vitro and in vivo toxicity test methods. Chapter 4. Critical evaluation of toxicity tests. In: Fadeel B, Pietroiusti A, Shvedova A (eds) Adverse effects of engineered nanomaterials: exposure, toxicology and impact on human health. Elsevier, New York

    Google Scholar 

  15. Dusinska M, Magdolenova Z, Fjellsbø LM (2013) Toxicological aspects for nanomaterial in humans. In: Ogris M, Oupicky D (eds) Nanotechnology, methods in molecular biology. Humana, Totowa

    Google Scholar 

  16. Handy RD, van den Brink N, Chappell M et al (2012) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21:933–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Magdolenova Z, Bilaničová D, Pojana G et al (2012) Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. J Environ Monit 14:455–64

    Article  CAS  PubMed  Google Scholar 

  18. Tulinska J, Kazimirova A, Kuricova M, et al. (2014) Immunotoxicity and genotoxicity testing of PLGA-PEO nanoparticles in human blood cell model. Nanotoxicology (in press)

    Google Scholar 

  19. Guadagnini R, Halamoda Kenzaoui B, et al. (2014) Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology (in press)

    Google Scholar 

  20. Dusinska M, Collins A (2008) The Comet assay in human biomonitoring: gene–environment interactions. Mutagenesis 23:191–205

    Article  CAS  PubMed  Google Scholar 

  21. OECD (2008) OECD work on the safety of manufactured nanomaterials. Environment, health and safety division. Environment Directorate. OECD. www.oecd.org/dataoecd/54/27/41567645.ppt

  22. Stone V, Nowack B, Baun A et al (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterization. Sci Total Environ 408:1745–54

    Article  CAS  PubMed  Google Scholar 

  23. NanoGenotox project report. http://www.nanogenotox.eu/files/PDF/nanogenotox_web.pdf

  24. Kroll A, Pillukat MH, Hahn D et al (2012) Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86: 1123–1136

    Article  CAS  PubMed  Google Scholar 

  25. Magdolenova Z, Lorenzo Y, Collins A et al (2012) Can standard genotoxicity tests be applied to nanoparticles? J Toxicol Environ Health A 75:800–806

    Article  CAS  PubMed  Google Scholar 

  26. Rajapakse K, Drobne D, Kastelec D et al (2013) Experimental evidence of false-positive Comet test results due to TiO2 particle-assay interactions. Nanotoxicology 7:1043–1051

    Article  CAS  PubMed  Google Scholar 

  27. Landsiedel R, Kapp MD, Schulz M et al (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutat Res 681:241–458

    Article  CAS  PubMed  Google Scholar 

  28. Stone V, Johnston H, Schins RPF (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626

    Article  CAS  PubMed  Google Scholar 

  29. Kain J, Karlsson HL, Möller L (2012) DNA damage induced by micro- and nanoparticle—interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 27:491–500

    Article  CAS  PubMed  Google Scholar 

  30. Tice R, Vasquez M (1999) Protocol for the application of the pH > 13 alkaline single cell gel (SCG) assay to the detection of DNA damage in mammalian cells. http://cometassay.com/index_files/Page290.htm

  31. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  CAS  PubMed  Google Scholar 

  32. OECD (2011) A steering group 7 case-study for hazard identification of inhaled nanomaterials: an integrated approach with short-term inhalation studies. ENV/CHEM/NANO(2011) 6/REV1. In: 10th meeting of the Working party on manufactured nanomaterials, OECD; 27–29 June 2012; Paris, France

    Google Scholar 

  33. Bright J, Aylott M, Bate S et al (2011) Recommendations on the statistical analysis of the Comet assay. Pharm Stat 10:485–493

    Article  PubMed  Google Scholar 

  34. OECD (2009). Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials. Environment Directorate, Organisation for Economic Co-operation and Development, Paris. OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials, No. 15

    Google Scholar 

  35. Collins AR, Dušinská M, Mišľanová C, among other ESCODD members (2002) Inter-laboratory validation of procedures for measuring 8-oxo-7,8-dihydroguanine/8-oxo-7,8-digydro-2′-deoxyguanosine in DNA. Free Radic Res 36:239–245

    Article  CAS  Google Scholar 

  36. Juillerat L, Dusinska M, Fjellesbo LM, et al. (2014) Biological impact assessment of nanomaterial used in nanomedicine. Introduction to the NanoTEST project. Nanotoxicology (in press)

    Google Scholar 

  37. ECHA (2012) Guidance on information requirements and chemical safety assessment. Appendix R7-1 Recommendations for nanomaterials applicable to Chapter R7a Endpoint specific guidance. European Chemicals Agency. http://echa.europa.eu/documents/10162/13632/appendix_r7a_nanomaterials_en.pdf

Download references

Acknowledgments

We thank Dr. Jonas Nygren for providing useful advice when developing our in vivo approach.

We thank Andrew R Collins, Zuzana Magdolenova, Lise M Fjellsbø, Elise Runden-Pran for adopting protocol and preparation of standard operating procedure. We also thank Mr. Leszek Huk for making plate for incubation slides and Mr. Michal Zagrodzki for helping with the graphic design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Catalán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Catalán, J., Suhonen, S., Huk, A., Dusinska, M. (2014). Analysis of Nanoparticle-Induced DNA Damage by the Comet Assay. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics