Skip to main content

Experimental Validation of Predicted Mammalian MicroRNAs of Mirtron Origin

  • Protocol
  • First Online:
RNA Mapping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1182))

Abstract

MicroRNAs (miRNAs) are ~22 nucleotide-long noncoding RNAs influencing many cellular processes by their regulatory functions on gene expression. MiRNAs of mirtron origin represent the most prominent group of the alternatively processed miRNAs. They reside in short introns, which are essentially equivalent to the precursor form of the given miRNA. Consequently, their maturation is independent of the Drosha/DGCR8 complex, while depends on the mechanism of mRNA splicing. The number of predicted human mirtron sequences increases as a consequence of the growing deep sequencing data and refined bioinformatics tools. However, experimental validations of particular sequences are also essential. In this chapter, we intend to provide detailed protocols for the investigation of predicted mirtron sequences. First, we use the Sleeping Beauty transposon-based gene-delivery system for the development of cell lines stably overexpressing mirtrons. The processing of functional mature miRNAs is then detected by a luciferase assay using a very strict “triple control” system. In addition, bona fide mirtron features are confirmed by demonstrating splicing dependency through splice site mutations, while Drosha/DGCR8 independency is assessed in DGCR8 deficient cell line. Finally, the presence of mirtron-derived mature miRNAs is detected by quantitative real-time PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  2. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Slezak-Prochazka I, Durmus S, Kroesen BJ et al (2010) MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16:1087–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  7. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    CAS  PubMed  Google Scholar 

  8. Yates LA, Norbury CJ, Gilbert RJ (2013) The long and short of microRNA. Cell 153:516–519

    Article  CAS  PubMed  Google Scholar 

  9. Miyoshi K, Miyoshi T, Siomi H (2010) Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics 284:95–103

    Article  CAS  PubMed  Google Scholar 

  10. Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Okamura K, Hagen JW, Duan H et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sibley CR, Seow Y, Saayman S et al (2012) The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res 40:438–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Havens MA, Reich AA, Duelli DM et al (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 40:4626–4640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Schamberger A, Sarkadi B, Orban TI (2012) Human mirtrons can express functional microRNAs simultaneously from both arms in a flanking exon-independent manner. RNA Biol 9:1177–1185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93:1897–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Flynt AS, Greimann JC, Chung WJ et al (2010) MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol Cell 38:900–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ladewig E, Okamura K, Flynt AS et al (2012) Discovery of hundreds of mirtrons in mouse and human small RNA data. Genome Res 22:1634–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Curtis HJ, Sibley CR, Wood MJ (2012) Mirtrons, an emerging class of atypical miRNA. Wiley Interdiscip Rev RNA 3:617–632

    Article  CAS  PubMed  Google Scholar 

  20. Meng Y, Shao C (2012) Large-scale identification of mirtrons in Arabidopsis and rice. PLoS One 7:e31163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Joshi PK, Gupta D, Nandal UK et al (2012) Identification of mirtrons in rice using MirtronPred: a tool for predicting plant mirtrons. Genomics 99:370–375

    Article  CAS  PubMed  Google Scholar 

  22. Ivics Z, Hackett PB, Plasterk RH et al (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  CAS  PubMed  Google Scholar 

  23. Ammar I, Izsvak Z, Ivics Z (2012) The Sleeping Beauty transposon toolbox. Methods Mol Biol 859:229–240

    Article  CAS  PubMed  Google Scholar 

  24. Lacy-Hulbert A, Thomas R, Li XP et al (2001) Interruption of coding sequences by heterologous introns can enhance the functional expression of recombinant genes. Gene Ther 8:649–653

    Article  CAS  PubMed  Google Scholar 

  25. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Izsvak Z, Ivics Z (2004) Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 9:147–156

    Article  CAS  PubMed  Google Scholar 

  27. Kim YK, Yeo J, Kim B et al (2012) Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell 46:893–895

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Medvid R, Melton C et al (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39:380–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Varallyay E, Burgyan J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3:190–196

    Article  CAS  PubMed  Google Scholar 

  30. Varallyay E, Burgyan J, Havelda Z (2007) Detection of microRNAs by Northern blot analyses using LNA probes. Methods 43:140–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Károly Fátyol for helpful discussions. Anita Schamberger is a recipient of the Jedlik Ányos predoc fellowship. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/1-11-1-2012-0001 “National Excellence Program” and also supported by the TransRat grant KMR_12-2012-0112 given to Tamás I. Orbán.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás I. Orbán Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schamberger, A., Orbán, T.I. (2014). Experimental Validation of Predicted Mammalian MicroRNAs of Mirtron Origin. In: Alvarez, M., Nourbakhsh, M. (eds) RNA Mapping. Methods in Molecular Biology, vol 1182. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1062-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1062-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1061-8

  • Online ISBN: 978-1-4939-1062-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics