Skip to main content

Random Insertional–Deletional Strand Exchange Mutagenesis (RAISE): A Simple Method for Generating Random Insertion and Deletion Mutations

  • Protocol
  • First Online:
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1179))

Abstract

Although proteins can be artificially improved by random insertion and deletion mutagenesis methods, these procedures are technically difficult. Here we describe a simple method called random insertional–deletional strand exchange mutagenesis (RAISE). This method is based on gene shuffling and can be used to introduce a wide variety of insertions, deletions, and substitutions. RAISE involves three steps: DNA fragmentation, attachment of a random short sequence, and reconstruction. This yields unique mutants and can be a powerful technique for protein engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antikainen NM, Martin SF (2005) Altering protein specificity: techniques and applications. Bioorg Med Chem 13:2701–2716

    Article  CAS  PubMed  Google Scholar 

  2. Otten LG, Quax WJ (2005) Directed evolution: selecting today’s biocatalysts. Biomol Eng 22:1–9

    Article  CAS  PubMed  Google Scholar 

  3. Robertson DE, Steer BA (2004) Recent progress in biocatalyst discovery and optimization. Curr Opin Chem Biol 8:141–149

    Article  CAS  PubMed  Google Scholar 

  4. Powell KA, Ramer SW, del Cardayre SB et al (2001) Directed evolution and biocatalysis. Angew Chem Int Ed Engl 40:3948–3959

    Article  CAS  PubMed  Google Scholar 

  5. Brakmann S (2001) Discovery of superior enzymes by directed molecular evolution. Chembiochem 2:865–871

    Article  CAS  PubMed  Google Scholar 

  6. Farinas ET, Bulter T, Arnold FH (2001) Directed enzyme evolution. Curr Opin Biotechnol 12:545–551

    Article  CAS  PubMed  Google Scholar 

  7. Goldsmith M, Tawfik DS (2013) Enzyme engineering by targeted libraries. Methods Enzymol 523:257–283

    Article  CAS  PubMed  Google Scholar 

  8. Goldsmith M, Tawfik DS (2012) Directed enzyme evolution: beyond the low-hanging fruit. Curr Opin Struct Biol 22:406–412

    Article  CAS  PubMed  Google Scholar 

  9. Wang M, Si T, Zhao H (2012) Biocatalyst development by directed evolution. Bioresour Technol 115:117–125

    Article  CAS  PubMed  Google Scholar 

  10. Neylon C (2004) Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 32:1448–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Leung DW, Chen E, Goeddel DV (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1:11–15

    Google Scholar 

  12. Shortle D, Sondek J (1995) The emerging role of insertions and deletions in protein engineering. Curr Opin Biotechnol 6:387–393

    Article  CAS  PubMed  Google Scholar 

  13. Jones DD (2005) Triplet nucleotide removal at random positions in a target gene: the tolerance of TEM-1 b-lactamase to an amino acid deletion. Nucleic Acids Res 33:e80

    Article  PubMed Central  PubMed  Google Scholar 

  14. Baldwin AJ, Busse K, Simm AM et al (2008) Expanded molecular diversity generation during directed evolution by trinucleotide exchange (TriNEx). Nucleic Acids Res 36:e77

    Article  PubMed Central  PubMed  Google Scholar 

  15. Murakami H, Hohsaka T, Sisido M (2002) Random insertion and deletion of arbitrary number of bases for codon-based random mutation of DNAs. Nat Biotechnol 20:76–81

    Article  CAS  PubMed  Google Scholar 

  16. Pikkemaat MG, Janssen DB (2002) Generating segmental mutations in haloalkane dehalogenase: a novel part in the directed evolution toolbox. Nucleic Acids Res 30:e35

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hayes F, Hallet B (2000) Pentapeptide scanning mutagenesis: encouraging old proteins to execute unusual tricks. Trends Microbiol 8:571–577

    Article  CAS  PubMed  Google Scholar 

  18. Kim D, Rhee Y, Rhodes D et al (2005) Directed evolution and identification of control regions of ColE1 plasmid replication origins using only nucleotide deletions. J Mol Biol 351:763–775

    Article  CAS  PubMed  Google Scholar 

  19. Fujii R, Kitaoka M, Hayashi K (2006) RAISE: a simple and novel method of generating random insertion and deletion mutations. Nucleic Acids Res 34:e30

    Article  PubMed Central  PubMed  Google Scholar 

  20. Stemmer WPC (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Article  CAS  PubMed  Google Scholar 

  21. Lewin B (1994) Gene. Oxford University Press, Oxford

    Google Scholar 

  22. Lewis SM (1994) The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. In: Dixon FJ (ed) Advances in immunology, vol 56. Academic, San Diego, pp 27–150

    Google Scholar 

  23. Komori T, Okada A, Stewart V et al (1993) Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261:1171–1175

    Article  CAS  PubMed  Google Scholar 

  24. Pascarella S, Argos P (1992) Analysis of insertions/deletions in protein structures. J Mol Biol 224:461–471

    Article  CAS  PubMed  Google Scholar 

  25. Lorimer IAJ, Pastan I (1995) Random recombination of antibody single chain Fv sequences after fragmentation with DNaseI in the presence of Mn2+. Nucleic Acids Res 23:3067–3068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Aharoni A, Griffiths AD, Tawfik DS (2005) High-throughput screens and selections of enzyme-encoding genes. Curr Opin Chem Biol 9:210–216

    Article  CAS  PubMed  Google Scholar 

  27. Goddard JP, Reymond JL (2004) Recent advances in enzyme assays. Trends Biotechnol 22:363–370

    Article  CAS  PubMed  Google Scholar 

  28. Goddard JP, Reymond JL (2004) Enzyme assays for high-throughput screening. Curr Opin Biotechnol 15:314–322

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt M, Bornscheuer UT (2005) High-throughput assays for lipases and esterases. Biomol Eng 22:51–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomitsu Kitaoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fujii, R., Kitaoka, M., Hayashi, K. (2014). Random Insertional–Deletional Strand Exchange Mutagenesis (RAISE): A Simple Method for Generating Random Insertion and Deletion Mutations. In: Gillam, E., Copp, J., Ackerley, D. (eds) Directed Evolution Library Creation. Methods in Molecular Biology, vol 1179. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1053-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1053-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1052-6

  • Online ISBN: 978-1-4939-1053-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics