Skip to main content

HaloTag as a Tool to Investigate Peroxisome Dynamics in Cultured Mammalian Cells

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Peroxisomes are multifunctional organelles that can rapidly modulate their morphology, number, and function in response to changing environmental stimuli. Defects in any of these processes can lead to organelle dysfunction and have been associated with various inherited and age-related disorders. Progress in this field continues to be driven by advances in live-cell imaging techniques. This chapter provides detailed protocols for the use of HaloTag to fluorescently pulse-label peroxisomes in cultured mammalian cells. In contrast to the use of classical fluorescent proteins, this technology allows researchers to optically distinguish pools of peroxisomal proteins that are synthesized at different time points. The protocols can be easily adapted to image the dynamics of other macromolecular protein assemblies in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stepanenko OV, Stepanenko OV, Shcherbakova DM et al (2011) Modern fluorescent proteins: from chromophore formation to novel intracellular applications. Biotechniques 51:313–314

    Article  PubMed  Google Scholar 

  2. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19:555–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Subach FV, Subach OM, Gundorov IS et al (2009) Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 5:118–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Jung D, Min K, Jung J (2013) Chemical biology-based approaches on fluorescent labeling of proteins in live cells. Mol Biosyst 9:862–872

    Article  CAS  PubMed  Google Scholar 

  5. Huybrechts SJ, Van Veldhoven PP, Brees C et al (2009) Peroxisome dynamics in cultured mammalian cells. Traffic 10:1722–1733

    Article  CAS  PubMed  Google Scholar 

  6. Delille HK, Agricola B, Guimaraes SC et al (2010) Pex11pβ-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci 123:2750–2762

    Article  CAS  PubMed  Google Scholar 

  7. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  CAS  PubMed  Google Scholar 

  8. Cong M (2012) HaloTag platform: from proteomics to cellular analysis and animal imaging. Curr Chem Genomics 6:6–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Urh M, Rosenberg M (2012) HaloTag, a platform technology for protein analysis. Curr Chem Genomics 6:72–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fransen, M. (2012) Peroxisome dynamics: molecular players, mechanisms, and (dys)functions. ISRN Cell Biol, article ID 714192

    Google Scholar 

  11. Legakis JE, Koepke JI, Jedeszko C et al (2002) Peroxisome senescence in human fibroblasts. Mol Biol Cell 13:4243–4255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Waterham HR, Koster J, van Roermund CW et al (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741

    Article  CAS  PubMed  Google Scholar 

  13. Ebberink MS, Koster J, Visser G et al (2012) A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11β gene. J Med Genet 49:307–313

    Article  CAS  PubMed  Google Scholar 

  14. Fransen M, Nordgren M, Wang B et al (2013) Aging, age-related diseases and peroxisomes. Subcell Biochem 69:45–65

    Article  CAS  PubMed  Google Scholar 

  15. Ribeiro D, Castro I, Fahimi HD et al (2012) Peroxisome morphology in pathology. Histol Histopathol 27:661–676

    CAS  PubMed  Google Scholar 

  16. Schrader M, King SJ, Stroh TA et al (2000) Real time imaging reveals a peroxisomal reticulum in living cells. J Cell Sci 113:3663–3671

    CAS  PubMed  Google Scholar 

  17. Koch A, Schneider G, Lüers GH et al (2004) Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J Cell Sci 117:3995–4006

    Article  CAS  PubMed  Google Scholar 

  18. Matsuzaki T, Fujiki Y (2004) The peroxisomal membrane protein import receptor Pex3p is directly transported to peroxisomes by a novel Pex19p- and Pex16p-dependent pathway. J Cell Biol 183:1275–1286

    Article  Google Scholar 

  19. Beier K (1992) Light microscopic morphometric analysis of peroxisomes by automatic image analysis: advantages of immunostaining over the alkaline DAB method. J Histochem Cytochem 40:115–121

    Article  CAS  PubMed  Google Scholar 

  20. Saengkhae C, Loetchutinat C, Garnier-Suillerot A (2003) Kinetic analysis of rhodamines efflux mediated by the multidrug resistance protein (MRP1). Biophys J 85:2006–2014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the KU Leuven (OT/09/045) and the Research Foundation Flanders (G.0754.09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fransen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fransen, M. (2014). HaloTag as a Tool to Investigate Peroxisome Dynamics in Cultured Mammalian Cells. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics