Skip to main content

Protein Production for Structural Genomics Using E. coli Expression

  • Protocol
  • First Online:
Structural Genomics and Drug Discovery

Abstract

The goal of structural biology is to reveal details of the molecular structure of proteins in order to understand their function and mechanism. X-ray crystallography and NMR are the two best methods for atomic level structure determination. However, these methods require milligram quantities of proteins. In this chapter a reproducible methodology for large-scale protein production applicable to a diverse set of proteins is described. The approach is based on protein expression in E. coli as a fusion with a cleavable affinity tag that was tested on over 20,000 proteins. Specifically, a protocol for fermentation of large quantities of native proteins in disposable culture vessels is presented. A modified protocol that allows for the production of selenium-labeled proteins in defined media is also offered. Finally, a method for the purification of His6-tagged proteins on immobilized metal affinity chromatography columns that generates high-purity material is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim Y, Babnigg G, Jedrzejczak R et al (2011) High-throughput protein purification and quality assessment for crystallization. Methods 55:12–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gräslund S, Nordlund P, Weigelt J et al (2008) Protein production and purification. Nat Methods 5:135–146

    Article  PubMed  Google Scholar 

  3. Vincentelli R, Bignon C, Gruez A et al (2003) Medium-scale structural genomics: strategies for protein expression and crystallization. Acc Chem Res 36:165–172

    Article  CAS  PubMed  Google Scholar 

  4. Elsliger M-A, Deacon AM, Godzik A et al (2010) The JCSG high-throughput structural biology pipeline. Acta Crystallorgr Sect F Struct Biol Cryst Commun 66:1137–1142

    Article  CAS  Google Scholar 

  5. Peti W, Page R, Moy K et al (2005) Towards miniaturization of a structural genomics pipeline using micro-expression and microcoil NMR. J Struct Funct Genomics 6:259–267

    Article  CAS  PubMed  Google Scholar 

  6. Price WN II, Handelman SK, Everett JK et al (2011) Large-scale experimental studies show unexpected amino acid effects on protein expression and solubility in vivo in E. coli. Microb Inform Exp 1:1–20

    Article  Google Scholar 

  7. Xiao R, Anderson S, Aramini J et al (2010) The high-throughput protein sample production platform of the Northeast structural genomics consortium. J Struct Biol 172:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  9. Kim Y, Dementieva I, Zhou M et al (2004) Automation of protein purification for structural genomics. J Struct Funct Genomics 5:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lesley SA, Wilson IA (2005) Protein production and crystallization at the joint center for structural genomics. J Struct Funct Genomics 6:71–79

    Article  CAS  PubMed  Google Scholar 

  11. Lesley SA, Kuhn P, Godzik A et al (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc Natl Acad Sci 99:11664–11669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Page R, Peti W, Wilson IA et al (2005) NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline. Proc Natl Acad Sci U S A 102:1901–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Donnelly MI, Zhou M, Millard CS et al (2006) An expression vector tailored for large-scale, high-throughput purification of recombinant proteins. Protein Expr Purif 47:446–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eschenfeldt W, Maltseva N, Stols L et al (2010) Cleavable C-terminal His-tag vectors for structure determination. J Struct Funct Genomics 11:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263–281

    Article  CAS  PubMed  Google Scholar 

  16. Burley SK, Joachimiak A, Montelione GT et al (2008) Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers. Structure 16:5–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Joachimiak A (2009) High-throughput crystallography for structural genomics. Curr Opin Struct Biol 19:573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim Y, Bigelow L, Borovilos M et al (2008) High-throughput protein purification for X-ray crystallography and NMR. Adv Protein Chem Struct Biol 75:85–105

    CAS  PubMed  Google Scholar 

  19. Millard CS, Stols L, Quartey P et al (2003) A less laborious approach to the high-throughput production of recombinant proteins in Escherichia coli using 2-liter plastic bottles. Protein Expr Purif 29:311–320

    Article  PubMed  Google Scholar 

  20. Abdullah JM, Joachimiak A, Collart FR (2009) “System 48” high-throughput cloning and protein expression analysis. Methods Mol Biol 498:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Acton TB, Xiao R, Anderson S et al (2011) Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Methods Enzymol 493:21–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stols L, Millard CS, Dementieva I et al (2004) Production of selenomethionine-labeled proteins in two-liter plastic bottles for structure determination. J Struct Funct Genomics 5:95–102

    Article  CAS  PubMed  Google Scholar 

  23. Van Duyne GD, Standaert RF, Karplus PA et al (1993) Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 229:105–124

    Article  PubMed  Google Scholar 

  24. Kapust RB, Waugh DS (2000) Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr Purif 19:312–318

    Article  CAS  PubMed  Google Scholar 

  25. Stols L, Gu M, Dieckman L et al (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25:8–15

    Article  CAS  PubMed  Google Scholar 

  26. Blommel PG, Fox BG (2007) A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr Purif 55:53–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng J, Davies DR, Wisedchaisri G et al (2004) An improved protocol for rapid freezing of protein samples for long-term storage. Acta Crystallogr D 60:203–204

    Article  PubMed  Google Scholar 

  28. Cormier C, Park J, Fiacco M et al (2011) PSI:Biology-materials repository: a biologist’s resource for protein expression plasmids. J Struct Funct Genomics 12:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sauder MJ, Rutter ME, Bain K et al (2008) High throughput protein production and crystallization at NYSGXRC. Methods Mol Biol 426:561–575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Allergy and Infectious Diseases Contract (HHSN272200700058C and HHSN272201200026C), the National Institute of Health Grant GM094585, and the US Department of Energy office of Biological and Environmental Research under Contract No. DE-AC02-06CH11357. This work has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or behalf of the government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Makowska-Grzyska, M. et al. (2014). Protein Production for Structural Genomics Using E. coli Expression. In: Anderson, W.F. (eds) Structural Genomics and Drug Discovery. Methods in Molecular Biology, vol 1140. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0354-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0354-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0353-5

  • Online ISBN: 978-1-4939-0354-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics