Skip to main content

Dendritic Cells

  • Living reference work entry
  • First Online:
Cancer Therapeutic Targets
  • 155 Accesses

Abstract

In 1868, Paul Langerhans discovered the first immune cell during a study of the skin. The cells he discovered, dendritic cells (DCs), were named for their long projections that made them resemble the dendrites of nerve cells, which was the function Langerhans assigned to them at that time. The true role of DCs as powerful antigen-presenting cells (APC) was elucidated by Ralph Steinman in 1973, in studies that ultimately led to the award of a Nobel Prize in 2011. These cells play a vital role in our immune system, covering both innate and adaptive immune responses, and come from a variety of lineages and have various locations (Kuby et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H, Sorenson EC, Popow R, Raiyan C, Rossi F, Besmer P, Guo T, Antonescu CR, Taguchi T, Yuan J, Wolchok JD, Allison JP, DeMatteo RP. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17:1094–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copier J, Bodman-Smith M, Dalgleish A. Current status and future applications of cellular therapies for cancer. Immunotherapy. 2011;3:507–16.

    Article  CAS  PubMed  Google Scholar 

  • Engell-Noerregaard L, Hansen TH, Andersen MH, Straten PT, Svane IM. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother. 2009;58:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Gilliet M, Kleinhans M, Lantelme E, Schadendorf D, Burg G, Nestle FO. Intranodal injection of semimature monocyte-derived dendritic cells induces T helper type I responses to protein neoantigen. Blood. 2003;102:36–42.

    Article  CAS  PubMed  Google Scholar 

  • Huber ML, Haynes L, Parker C, Iversen P. Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Nat Cancer Inst. 2012;104:273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinski P, Urban J, Narang R, Berk E, Wieckowski E, Muthuswamy R. Dendritic cell-based therapeutic cancer vaccines: what we have and what we need. Future Oncol. 2009;5:379–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62:309–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuby J, Kindt TJ, Goldsby RA, Osborne BA. Immunology. 6th ed. New York: W.H. Freeman; 2007.

    Google Scholar 

  • Larmonier N, Janikashvili N, LaCasse CJ, Larmonier CB, Cantrell J, Situ E, Lundeen T, Bonnotte B, Katsanis E. Imatinib mesylate inhibits CD4+CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol. 2008;181:6955–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WM, Dalgleish AG. The potential effects of drugs on the immune response to vaccination. Semin Oncol. 2012;39:340–7.

    Article  CAS  PubMed  Google Scholar 

  • Longo DL. New therapies for castration-resistant prostate cancer. N Engl J Med. 2010;363:479–81.

    Article  CAS  PubMed  Google Scholar 

  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parham P. The immune system. 3rd ed. New York: Garland Science; 2009.

    Google Scholar 

  • Schreibelt G, Tel J, Sliepen KHEWJ, Benitez-Ribas D, Figdor CG, Adema GJ, de Vries IJM. Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol Immunother. 2010;59:1573–82.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hong S, Yang J, Qian J, Zhang X, Shpall E, Kwak LW, Yi Q. Optimizing immunotherapy in multiple myeloma: restoring the function of patients’ monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood. 2006;108:4071–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg RA. The biology of cancer. New York: Garland Science; 2007.

    Google Scholar 

  • Zou W, Restifo NP. T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010;10:248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah E. Goyne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Goyne, H.E., Cannon, M. (2013). Dendritic Cells. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6613-0_62-4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6613-0_62-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6613-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics