Skip to main content

Systems Descending from the Cortex and Brain Stem: Functional Recovery Following Damage

  • Living reference work entry
  • First Online:
Neuroscience in the 21st Century
  • 47 Accesses

Abstract

Complex activation patterns of forelimb muscles during skilled reach and grasp movements are generated by the combined activity of a variety of descending pathways from supraspinal centers to the spinal motoneurons. The corticospinal tract originating from the primary motor cortex is directly connected to motoneurons innervating forelimb muscles and are considered to be crucial for the dexterous digit movements, while other descending inputs mediated by the brainstem nuclei such as red nucleus (rubrospinal tract), brainstem reticular formation (reticulospinal tract), and propriospinal neurons additionally contribute to various aspects of the skilled forelimb movements. These pathways are also involved in the compensation of the impaired motor functions for the recovery after injury to the corticospinal tract such as the stroke and spinal cord injury. There, these various descending pathways dynamically interact with each other depending on the location and extent of the injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alstermark B, Isa T, Ohki Y, Saito Y (1999) Disynaptic pyramidal excitation in forelimb motoneurons mediated via C3-C4 propriospinal neurons in the macaca fuscata. J Neurophysiol 82:3580–3585

    Article  CAS  Google Scholar 

  • Barth TM, Stanfield BB (1990) The recovery of forelimb-placing behavior in rats with neonatal unilateral cortical damage involves the remaining hemisphere. J Neurosci 10:3449–3459

    Article  CAS  Google Scholar 

  • Belhaj-Saïf A, Cheney PD (2000) Plasticity in the distribution of the red nucleus output to forearm muscles after unilateral lesions of the pyramidal tract. J Neurophysiol 83:3147–3153

    Article  Google Scholar 

  • Buford JA, Davidson AG (2004) Movement-related and preparatory activity in the reticulospinal system of the monkey. Exp Brain Res 159:284–300

    Article  Google Scholar 

  • Buys EJ, Lemon RN, Mantel GW, Muir RB (1986) Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey. J Physiol (Lond) 381:529–549

    Article  CAS  Google Scholar 

  • Darling WG, Ge J, Stilwell-Morecraft KS, Rotella DL, Pizzimenti MA, Morecraft R (2018) Hand motor recovery following extensive frontoparietal cortical injury is accompanied by upregulated corticoreticular projections in monkey. J Neurosci 38:6323–6339

    Article  CAS  Google Scholar 

  • Davidson AG, Buford JA (2006) Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. Exp Brain Res 173:25–39

    Article  Google Scholar 

  • Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525

    Article  CAS  Google Scholar 

  • Esposito MS, Capelli P, Arber S (2014) Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508:351–356

    Article  CAS  Google Scholar 

  • Hallett M (2001) Functional reorganization after lesions of the human brain: studies with transcranial magnetic stimulation. Rev Neurol (Paris) 157:822–826

    CAS  Google Scholar 

  • Heffner RS, Masterton RB (1975) Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol 12:161–200

    Article  CAS  Google Scholar 

  • Heffner RS, Masterton RB (1983) The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol 23:165–183

    Article  CAS  Google Scholar 

  • Isa T (2017) The brain is needed to cure spinal cord injury. Trends Neurosci 40:625–636

    Article  CAS  Google Scholar 

  • Isa T (2019) Dexterous hand movements and their recovery after central nervous system injury. Ann Rev Neurosci 42:315–335

    Article  CAS  Google Scholar 

  • Isa T, Sasaki S (2002) Brainstem control of head movements during orienting; organization of the premotor circuits. Prog Neurobiol 66:205–241

    Article  Google Scholar 

  • Isa T, Ohki Y, Seki K, Alstermark B (2006) Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey. J Neurophysiol 95:3674–3685

    Article  Google Scholar 

  • Ishida A, Isa K, Umeda T, Kobayashi K, Kobayashi K, Hida H, Isa T (2016) Causal link between the cortico-rubral pathway and functional recovery through forced impaired limb use in rats with stroke. J Neurosci 36:455–467

    Article  Google Scholar 

  • Ishida A, Kobayashi K, Ueda Y, Shimizu T, Taijiri N, Isa T, Hida H (2019) Dynamic interaction between conrtico-brainstem pathways during training-induced recovery in stroke model rats. J Neurosci 39:7306–7320

    Article  CAS  Google Scholar 

  • Jankowska E, Edgley SA (2006) How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions. Neuroscientist 12:67–79

    Article  Google Scholar 

  • Kinoshita M, Matsui R, Kato S, Hasegawa T, Kasahara H, Isa K, Watakabe A, Yamamori T, Nishimura Y, Alstermark B, Watanabe D, Kobayashi K, Isa T (2012) Genetic dissection of the circuit for hand dexterity in primates. Nature 487:235–238

    Article  CAS  Google Scholar 

  • Kuypers HG, Brinkman J (1970) Precentral projections to different parts of the spinal intermediate zone in therhesus monkey. Brain Res 24:29–48

    Article  CAS  Google Scholar 

  • Kuypers HGJM, Fleming WR, Farinholt JW (1962) Subcorticospinal projections in the rhesus monkey. J Comp Neurol 118:107–137

    Article  CAS  Google Scholar 

  • Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, Tuszynski MH (2004) Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study. J Comp Neurol 473:147–161

    Article  Google Scholar 

  • Lawrence DG, Kuypers HG (1968a) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91:1–14

    Article  CAS  Google Scholar 

  • Lawrence DG, Kuypers HG (1968b) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 91:15–36

    Article  CAS  Google Scholar 

  • Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31:656–661

    Article  CAS  Google Scholar 

  • Martin JH (2005) The corticospinal system: from development to motor control. Neuroscientist 11:161–173

    Article  Google Scholar 

  • Nakagawa H, Ninomiya T, Yamashita T, Takada M (2015) Reorganization of corticospinal tract fibers after spinal cord injury in adult macaques. Sci Rep 5:11986

    Article  Google Scholar 

  • Nishimura Y, Onoe T, Morichika Y, Perfiliev S, Tsukada H, Isa T (2007) Time-dependent central compensatory mechanism of finger dexterity after spinal-cord injury. Science 318:1150–1155

    Article  CAS  Google Scholar 

  • Riddle CN, Edgley SA, Baker SN (2009) Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J Neurosci 29:4993–4999

    Article  CAS  Google Scholar 

  • Rosenzweig ES, Courtine G, Jindrich DL, Brock JH, Ferguson AR, Strand SC, Nout YS, Roy RR, Miller DM, Beattie MS, Havton LA, Bresnahan JC, Edgerton VR, Tuszynski MH (2010) Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13:1505–1510

    Article  CAS  Google Scholar 

  • Sasaki S, Isa T, Pettersson LG, Alstermark B, Naito K, Yoshimura K, Seki K, Ohki Y (2004) Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. J Neurophysiol 92:3142–3147

    Article  Google Scholar 

  • Schepens B, Drew T (2006) Descending signals from the pontomedullary reticular formation are bilateral, asymmetric, and gated during reaching movements in the cat. J Neurophysiol 96:2229–2252

    Article  Google Scholar 

  • Takahashi M, Vattanajun A, Umeda T, Isa K, Isa T (2009) Large-scale reorganization of corticofugal fibers after neonatal hemidecortication for functional restoration of forelimb movements. Eur J Neurosci 30:1878–1887

    Article  Google Scholar 

  • Tohyama T, Kinoshita M, Kobayashi K, Isa K, Watanabe D, Kobayashi K, Liu M, Isa T (2017) Contribution of propriospinal neurons to recovery of hand dexterity after corticospinal tract lesions in monkeys. Proc Natl Acad Sci USA 114:604–609

    Article  CAS  Google Scholar 

  • Umeda T, Takahashi M, Isa K, Isa T (2010) Formation of descending pathways mediating cortical command to forelimb motoneurons in neonatally hemidecorticated rats. J Neurophysiol 104:1707–1716

    Article  Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 126:1430–1448

    Article  CAS  Google Scholar 

  • Yoshino-Saito K, Nishimura Y, Oishi T, Isa T (2010) Quantitative inter-segmental and inter-laminar comparison of corticospinal projections from the forelimb area of the primary motor cortex of macaque monkeys. Neurosci 171:1164–1179

    Article  CAS  Google Scholar 

  • Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN (2012) Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 135:2277–2289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Isa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Isa, T. (2022). Systems Descending from the Cortex and Brain Stem: Functional Recovery Following Damage. In: Pfaff, D.W., Volkow, N.D., Rubenstein, J. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_36-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_36-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6434-1

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics