Skip to main content

Nuclear Fusion

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Climate Change Mitigation and Adaptation
  • 192 Accesses

Abstract

Nuclear Fusion is the power of the sun and all shining stars in the universe. Controlled nuclear fusion toward ultimate energy sources for human beings has been developed intensively worldwide for this half a century. A fusion power plant is free from concern of exhaustion of fuels and production of CO2. Therefore, it has a very attractive potential to be eternal fundamental energy sources and will contribute to resolving problems of climate change. On the other hand, unresolved issues in physics and engineering still remain. It will take another several decades to realize a fusion power plant by integration of advanced science and engineering such as control of high-temperature plasma exceeding 100 million °C and breeding technology of tritium by generated neutrons. The research and development has entered the phase of engineering demonstration to extract 500 MW of thermal energy from fusion reaction in the 2030s. The demonstration of electric power generation by 2050 is targeted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abernethy RG (2016) Predicting the performance of tungsten in a fusion environment: a literature review. Energ Mater 11:388–399

    Google Scholar 

  • Atzeni S, Meyer-Ter-Vehn J (2004) The physics of inertial fusion. Clarendon Press-Oxford

    Google Scholar 

  • Aymar R (2001) Summary of the ITER final design report. ITER document G A0 FDR 4 01-06-28 R 0.2, Garching ITER Joint Work Site July 2001, 9

    Google Scholar 

  • Bachmann C et al (2018) Overview over DEMO design integration challenges and their impact on component design concepts. Fusion Eng Des 136(Part A):87–95

    Article  Google Scholar 

  • Barabaschi P et al (2019) Progress of the JT-60SA project. Nucl Fusion 59:112005

    Article  Google Scholar 

  • Bell M et al (1995) Overview of DT results from TFTR. Nucl Fusion 35:1429–1436

    Article  Google Scholar 

  • Bethe H, Peierls R (1935) Quantum theory of the diplon. Proc R Soc Lond A 148:146–156

    Article  MATH  Google Scholar 

  • Betti R, Hurricane OA (2016) Inertial-confinement fusion with lasers. Nat Phys 12:435–448

    Article  Google Scholar 

  • Bigot B (2019) Progress toward ITER’s first plasma. Nucl Fusion 59:112001

    Article  Google Scholar 

  • Braams CM, Stott PE (2002) Nuclear fusion: half a century of magnetic confinement fusion research. IOP Publishing Ltd, London

    Book  Google Scholar 

  • Bruzzone P et al (2018) High temperature superconductors for fusion magnets. Nucl Fusion 58:103001

    Article  Google Scholar 

  • Campbell DJ et al (2019) Innovations in technology and Science R&D for ITER. J Fusion Energ 38:11–71

    Article  Google Scholar 

  • Chen FF (2011) An indispensable truth, how fusion power can save the planet. Springer, London

    Book  Google Scholar 

  • Claessens M (2020) ITER: the Giant fusion reactor. Springer Nature Switzerland, Cham

    Book  Google Scholar 

  • Clery D (2013) A piece of the sun. Harry N, Abrams

    Google Scholar 

  • Dinklage A et al (2007) Physics model assessment of energy confinement time scaling in stellarators. Nucl Fusion 47:1265–1273

    Article  Google Scholar 

  • Dolan TJ et al (2013) Magnetic fusion technology. Springer, London

    Book  Google Scholar 

  • Donné AJ (2019) Roadmap towards fusion electricity. J Fusion Energ 38:503–505

    Article  Google Scholar 

  • Eliezer S, Eliezer Y (2001) The fourth state of matter: an introduction to plasma science. IOP Publishing Ltd, London

    Book  MATH  Google Scholar 

  • EUROfusion (2018) European research roadmap to the realization of fusion energy. Available at https://www.euro-fusion.org/fileadmin/user_upload/EUROfusion/Documents/2018_Research_roadmap_long_version_01.pdf

  • Federici G (2019) Overview of the DEMO staged design approach in Europe. Nucl Fusion 59:066013

    Article  Google Scholar 

  • Forsberg C et al (2019) Fusion blankets and fluoride-salt-cooled high-temperature reactors with flibe salt coolant: common challenges, tritium control and opportunities for synergistic development strategies between fission, fusion, and solar salt technology. Nuclear Technology (published online)

    Google Scholar 

  • Garin P et al (2009) Main baseline of IFMIF/EVEDA project. Fusion Eng Des 84:259–264

    Article  Google Scholar 

  • Gi K et al (2018) Contribution of fusion energy to low-carbon development under the Paris Agreement and Accompanying Uncertainties. In: Proceedings of the 27th international conference on fusion energy (Ahmedabad, 2018) IAEA, Vienna, FIP/P3–2

    Google Scholar 

  • Giancarli L et al (2018) ITER TMB program and associated engineering. Fusion Eng Des 136(Part B):815–821

    Article  Google Scholar 

  • Gibson A (1998) Deuterium-tritium plasmas in the Joint European Torus (JET): behavior and implications. Phys Plasmas 5:1839–1846

    Article  Google Scholar 

  • Glaser A, Goldston RJ (2012) Proliferation risks of magnetic fusion energy: clandestine production, covert production and breakout. Nucl Fusion 52:043004

    Article  Google Scholar 

  • Hawryluk RJ et al (1998) Fusion plasma experiments on TFTR: a 20 year retrospective. Phys Plasmas 5:1577–1589

    Article  Google Scholar 

  • Helander P (2014) Theory of plasma confinement in non-axisymmetric magnetic field. Rep Prog Phys 77:087001

    Article  Google Scholar 

  • Hoshino T (2015) Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 359:59–63

    Article  Google Scholar 

  • Iiyoshi A et al (1999) Overview of the large helical device project. Nucl Fusion 39:1245–1256

    Article  Google Scholar 

  • Ikeda K (2010) ITER on the road to fusion energy, K. Ikeda. Nucl Fusion 50:014002

    Article  Google Scholar 

  • Imagawa S et al (2010) Overview of LHD superconducting magnet system and its 10-year operation. Fusion Sci Technol 58:560–570

    Article  Google Scholar 

  • Ishida S et al (1999) JT-60U high performance regime. Nucl Fusion 39:1211–1226

    Article  Google Scholar 

  • ITER Physics Basis Editors (1999) ITER physics basis. Nucl Fusion 39:2137–2638

    Article  Google Scholar 

  • ITER Research Plan within the Staged Approach (Level III – Provisional Version) (2018) REPORT No. ITR-18-003, ITER organization

    Google Scholar 

  • Jacquinot J (2010) Fifty years in fusion and the way forward. Nucl Fusion 50:014001

    Article  Google Scholar 

  • Kasahara H et al (2014) In: Proceedings of the 25th international conference on fusion energy (St. Petersburg, 2014) IAEA, Vienna, EX/7-3

    Google Scholar 

  • Kato T et al (2001) First test results for the ITER central solenoid model coil. Fusion Eng Des 56–57:59–70

    Article  Google Scholar 

  • Katoh Y et al (2007) Current status and critical issues for development of SiC composites for fusion applications. J Nucl Mater (367–370):659–671

    Google Scholar 

  • Kaye and Laby Online (2005) Tables of physical & chemical constants, 16th edn. 2.1.4 Hygrometry Version 1.0. Available at http://www.kayelaby.npl.co.uk/

  • Kikuchi M (2011) Frontiers in fusion research. Springer, London

    Book  Google Scholar 

  • Klinger T et al (2019) Overview of first Wendelstein 7-X high-performance operation. Nucl Fusion 59:112004

    Article  Google Scholar 

  • Kohyama A et al (1996) Low-activation ferritic and martensitic steels for fusion application. J Nucl Mater 233–237 Part 1: 138–147

    Google Scholar 

  • Koizumi N et al (2005) Development of advanced Nb3Al superconductors for a fusion demo plant. Nucl Fusion 45:431–438

    Article  Google Scholar 

  • Kondo K et al (2020) Validation of the linear IFMIF prototype accelerator (LIPAc) in Rokkasho. Fusion Eng Des 153:111503

    Article  Google Scholar 

  • Kovari M et al (2017) Tritium resources available for fusion reactors. Nucl Fusion 58:026010

    Article  Google Scholar 

  • Królas W, Ibarra A (2019) The IFMIF-DONES project. Nucl Phys News 29:28–32

    Article  Google Scholar 

  • Lawson JD (1957) Some criteria for a power producing thermonuclear reactor. Proc Phys Soc London, Sect B 70:6–10

    Article  Google Scholar 

  • Leonard AW (2018) Plasma detachment in divertor tokamaks. Plasma Phys Controlled Fusion 60:044001

    Article  Google Scholar 

  • Lie J et al (2010) Magnetic fusion development for global warming suppression. Nucl Fusion 50:014005

    Article  Google Scholar 

  • Maisonnier D (2018) RAMI: the main challenge of fusion nuclear technologies. Fusion Eng Des 136(Part B):1202–1208

    Article  Google Scholar 

  • Martone M (ed) (1996) IFMIF-international fusion materials irradiation facility conceptual design activity, final report. ENEA Frascati Report, RT/ERG/FUS/96/11 (December, 1996)

    Google Scholar 

  • McCraken G, Stott P (2012) Fusion: the energy of the universe. Elsevier Academic Press, San Diego

    Google Scholar 

  • Meade D (2010) 50 years of fusion research. Nucl Fusion 50:014004

    Article  Google Scholar 

  • MEXT (2018) A roadmap toward fusion DEMO reactor (first report). Ministry of Education, Culture, Sports, Science, and Technology. Available at https://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu2/074/shiryo/__icsFiles/afieldfile/2018/11/08/1408259_2_1.pdf

  • Mima K (2010) Inertial fusion development: the path to global warming suppression. Nucl Fusion 50:014006

    Article  Google Scholar 

  • Mitchell N, Devred A (2017) The ITER magnet system: configuration and construction satatus. Fusion Eng Des 123:17–25

    Article  Google Scholar 

  • Miyamae et al (2020) Fuel flow and stock during deuterium-deuterium start-up of fusion reactor with advanced plasma model. Fusion Eng Des 160:111794

    Article  Google Scholar 

  • Muroga T et al (2002) Vanadium alloys –overview and recent results. J Nucl Mater 307–311:547–554

    Article  Google Scholar 

  • Neilson H et al (2012) International Perspectives on a Path to MFE DEMO. In: Proceedings of the 24th international conference on fusion energy (San Diego, 2012) IAEA, Vienna, SEE/1-1

    Google Scholar 

  • Norgett MJ et al (1975) A proposed method of calculating displacement dose rates. Plasma Phys Controlled Fusion 33:50–54

    Google Scholar 

  • Nührenberg J et al (1995) Overview of Wendelstein 7-X theory. Fusion Technol 27:71–78

    Article  Google Scholar 

  • Ochiai K et al (2020) Conceptual design progress of advanced fusion neutron source. Nucl Fusion on line

    Google Scholar 

  • Ohyama N et al (2009) Overview of JT-60U results towards the establishment of advanced tokamak operation. Nucl Fusion 49:104007

    Article  Google Scholar 

  • Okano K et al (2018) An action plan of Japan toward development of demo reactor. Fusion Eng Des 136:183–189

    Article  Google Scholar 

  • Ongena J et al (2016) Magnetic-confinement fusion. Nat Phys 12:398–410

    Article  Google Scholar 

  • Osakabe M et al (2018) Preparation and commissioning for the LHD deuterium experiment. IEEE Trans Plasma Sci 46:2324–2331

    Article  Google Scholar 

  • Pamera J, Solano ER (2001) From JET to ITER: preparing the next step in fusion research, EFDA-JET-PR(01)16, EFDA, Culham Science Centre, Abington

    Google Scholar 

  • Ross L (2010) Superconductivity: its role, its success and its setbacks in the large hadron collider of CERN. Superconductor. Sci Technol 23:034001

    Google Scholar 

  • Rubel M (2018) Fusion neutrons: tritium breeding and impact on wall materials and components of diagnostic systems. J Fusion Energ 38:315–329

    Article  Google Scholar 

  • Sagara A et al (2014) Helical reactor design FFHR-d1 an c1 for steady-state DEMO. Fusion Eng Des 89:2114–2120

    Article  Google Scholar 

  • Sakharov AD, Leontovitch MA (eds) (1961) Plasma physics and the problem of controlled thermonuclear reactions. 1:21. Pergamon, London

    Google Scholar 

  • Soukhanovskii VA (2017) A review of radiative detachment studies in tokamak advanced magnetic divertor configurations. Plasma Phys Controlled Fusion 59:064005

    Article  Google Scholar 

  • Spitzer L Jr et al (1954) Problems of the stellarator as a useful power source. PM-S-14, USAEC NYO-6047

    Google Scholar 

  • Stacey WM (2010) Fusion: an introduction to the physics and technology of magnetic confinement fusion. Wiley-VCH

    Google Scholar 

  • Tanabe T (2017) Tritium: fuel of fusion reactors. Springer

    Google Scholar 

  • Team JET (1992) Fusion energy production from deuterium-tritium plasma in the JET tokamak. Nucl Fusion 32:187–203

    Article  Google Scholar 

  • Tobita K et al (2018) Overview of the DEMO conceptual design activity in Japan. Fusion Eng Des 136(Part B):1024–1031

    Article  Google Scholar 

  • Tsunematsu T (2009) Broader approach to fusion energy. Fusion Eng Des 84:122–124

    Article  Google Scholar 

  • Uo K (1961) The confinement of plasma by the Heliotron magnetic field. J Phys Soc Jpn 16:1380–1395

    Article  MATH  Google Scholar 

  • Webster AJ (2003) Fusion: power for the future. Phys Educ 38:135–142

    Article  Google Scholar 

  • Wesson J (2011) Tokamaks (the international series of monographs on physics), 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • White D (2019) Small, modular and economically attractive fusion enabled by high temperature superconductor. Phil Trans R Soc A 377:20180354

    Article  Google Scholar 

  • Yamada H et al (2005) Characterization of energy confinement in net-current free plasmas using the extended international stellarator database. Nucl Fusion 45:1684–1693

    Article  Google Scholar 

  • Yamada H et al (2009) 10 years of engineering and physics achievements by the large helical device project. Fusion Eng Des 84:186–193

    Article  Google Scholar 

  • Yamada H et al (2015) Japanese endeavors to establish technological bases for DEMO. Fusion Eng Des 109–111(Part B):1318–1325

    Google Scholar 

  • Yamada H et al (2016) Development of strategic establishment of technology bases for a fusion DEMO reactor in Japan. J Fusion Energ 35:4–26

    Article  Google Scholar 

  • Zhuang G et al (2019) Progress of the CFETR design. Nucl Fusion 59:112010

    Article  Google Scholar 

  • Zinkle SJ (2005) Fusion material science: overview of challenges and recent progress. Phys Plasmas 12:058101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamada, H. (2021). Nuclear Fusion. In: Lackner, M., Sajjadi, B., Chen, WY. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_31-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_31-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6431-0

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Nuclear Fusion
    Published:
    02 April 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_31-3

  2. Original

    Fusion Energy
    Published:
    02 April 2015

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_31-2