Skip to main content

Modeling Hybrid Systems

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 242 Accesses

Abstract

Hybrid systems combine continuous and discrete inputs, outputs, states, and dynamics. Models of hybrid systems combine models of continuous dynamics, such as differential equations, with models of discrete dynamics, such as finite automata. These rich entities can be used to model a wide variety of real-world phenomena. Hybrid models can be viewed as being built up from constituent continuous models with discrete phenomena added or vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Alur R, Dill DL (1994) A theory of timed automata. Theor Comp Sci 126:183–235

    Article  MathSciNet  Google Scholar 

  • Alur R, Courcoubetis C, Henzinger TA, Ho P-H (1993) Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman R, Nerode A, Ravn A, Rischel H (eds) Hybrid systems. Springer, New York, pp 209–229

    Chapter  Google Scholar 

  • Antsaklis PJ, Stiver JA, Lemmon MD (1993) Hybrid system modeling and autonomous control systems. In: Grossman R, Nerode A, Ravn A, Rischel H (eds) Hybrid systems. Springer, New York, pp 366–392

    Chapter  Google Scholar 

  • Back A, Guckenheimer J, Myers M (1993) A dynamical simulation facility for hybrid systems. In: Grossman R, Nerode A, Ravn A, Rischel H (eds) Hybrid systems. Springer, New York, pp 255–267

    Chapter  Google Scholar 

  • Bainov DD, Simeonov PS (1989) Systems with impulse effect. Ellis Horwood, Chichester

    MATH  Google Scholar 

  • Bensoussan A, Lions J-L (1984) Impulse control and quasi-variational inequalities. Gauthier-Villars, Paris

    MATH  Google Scholar 

  • Branicky MS (1995) Studies in hybrid systems: modeling, analysis, and control. ScD thesis, M.I.T., Cambridge, MA

    Google Scholar 

  • Branicky MS (1998) Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans Autom Control 43(4):475–482

    Article  MathSciNet  Google Scholar 

  • Branicky MS, Borkar VS, Mitter SK (1998) A unified framework for hybrid control: model and optimal control theory. IEEE Trans Autom Control 43(1):31–45

    Article  MathSciNet  Google Scholar 

  • Brockett RW (1993) Hybrid models for motion control systems. In: Trentelman HL, Willems JC (eds) Essays in control. Birkhäuser, Boston, pp 29–53

    Chapter  Google Scholar 

  • Cassandras CG, Lafortune S (1999) Introduction to discrete event systems. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Cassandras CG, Lygeros J (2006) Stochastic hybrid systems. CRC Press

    Book  Google Scholar 

  • Ghosh R, Tomlin C (2004) Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: delta-notch protein signalling. Syst Biol 1(1):170–183

    Article  Google Scholar 

  • Goebel R, Sanfelice RG, Teel AR (2009) Hybrid dynamical systems. IEEE Control Syst Mag 29(2):28–93

    Article  MathSciNet  Google Scholar 

  • Gollu A, Varaiya PP (1989) Hybrid dynamical systems. In: Proceedings of IEEE conference on decision control, Tampa, pp 2708–2712

    Google Scholar 

  • Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comp Prog 8:231–274

    Article  MathSciNet  Google Scholar 

  • Heemels WP, De Schutter B, Bemporad A (2001) Equivalence of hybrid dynamical models. Automatica 37(7):1085–1091

    Article  Google Scholar 

  • Henzinger TA, Kopke PW, Puri A, Varaiya P (1998) What’s decidable about hybrid automata? J Comput Syst Sci 57:94–124

    Article  MathSciNet  Google Scholar 

  • Hirsch MW, Smale S (1974) Differential equations, dynamical systems, and linear algebra. Academic, San Diego

    MATH  Google Scholar 

  • Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Lee EA, Seshia SA (2016) Introduction to embedded systems: a cyber-physical systems approach. MIT Press, Cambridge

    MATH  Google Scholar 

  • Liberzon D (2003) Switching in systems and control Birkhauser, Boston

    Google Scholar 

  • Luenberger DG (1979) Introduction to dynamic systems. Wiley, New York

    MATH  Google Scholar 

  • Maler O, Yovine S (1996) Hardware timing verification using KRONOS. In: Proceedings of 7th Israeli conference on computer systems and software engineering. Herzliya, Israel

    Google Scholar 

  • Meyer G (1994) Design of flight vehicle management systems. In: IEEE conference on decision control, plenary lecture, Lake Buena Vista

    Google Scholar 

  • Nerode A, Kohn W (1993) Models for hybrid systems: automata, topologies, controllability, observability. In: Grossman R, Nerode A, Ravn A, Rischel H (eds) Hybrid systems. Springer, New York, pp 317–356

    Chapter  Google Scholar 

  • Ramadge PJG, Wonham MW (1989) The control of discrete event systems. Proc IEEE 77(1):81–98

    Article  Google Scholar 

  • Sontag ED (1990) Mathematical control theory. Springer, New York

    Book  Google Scholar 

  • Tabuada P, Pappas GJ, Lima P (2001) Feasible formations of multi-agent systems. In: Proceedings of American control conference, Arlington

    Book  Google Scholar 

  • Tavernini L (1987) Differential automata and their discrete simulators. Nonlinear Anal Theory Methods Appls 11(6):665–683

    Article  MathSciNet  Google Scholar 

  • Tomlin C, Pappas GJ, Sastry S (1998) Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE Trans Autom Control 43(4):509–521

    Article  Google Scholar 

  • Witsenhausen HS (1966) A class of hybrid-state continuous-time dynamic systems. IEEE Trans Autom Control AC-11(2):161–167

    Article  Google Scholar 

  • Zabczyk J (1973) Optimal control by means of switching. Studia Mathematica 65:161–171

    Article  MathSciNet  Google Scholar 

  • Zhang J, Johansson KH, Lygeros J, Sastry S (2000) Dynamical systems revisited: hybrid systems with Zeno executions. In: Lynch N, Krogh B (eds) Hybrid systems: computation and control. Springer, Berlin, pp 451–464

    Chapter  Google Scholar 

  • Zhang W, Branicky MS, Phillips SM (2001) Stability of networked control systems. IEEE Control Syst Mag 21(1):84–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Branicky .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Branicky, M.S. (2020). Modeling Hybrid Systems. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100047-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100047-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics