Skip to main content

Thermal Stress Analysis and Characterization of Thermomechanical Properties of Thin Films on an Elastic Substrate

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology
  • 1356 Accesses

Abstract

This chapter presents a comprehensive review of the thermally induced stress in multilayer thin films within both the elastic and elastic–plastic deformation ranges and several approaches to determine the thermomechanical properties of thin films. The elastic analysis based on the linear strain assumption results in the closed-form solutions and approximations (for very thin films). Subsequently, the review is extended into the elastic–plastic deformed films in bilayer structures. Closed-form solutions of the maximum, average, and minimum film stresses and curvatures are discussed in details for plastically deformed films. The difference among the maximum stress, average stress, and Stoney stress in films is systematically revealed. As an example, the result of a case study reveals that the yield start point may be estimated as a linear function of temperature in the elastic–plastic deformation range.

A newly developed simple approach to determine the values of five thermomechanical properties of thin films, namely, the Young’s modulus, the coefficient of thermal expansion, yield start stress, strain hardening modulus, and Poisson’s ratio, is presented in details, together with some simple and generic approaches for the characterization of thin films with nonlinear stress versus strain relationship and/or temperature-dependent material properties. In the case of very thin films, analytical solutions are available.

These new approaches and solutions are applied to investigate the moduli of metallic films. The film thickness effect on the modulus of Ag films is confirmed. The critical role of a compressive stress in thin TiO2 layer atop NiTiCu film in the reversible trench phenomenon is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aviles F, Oliva AI, May PA (2008) Determination of elastic modulus in a biomaterial through a one-dimensional laminated model. J Mater Eng Perform 17:482–488

    Google Scholar 

  • Badawi KF, Villain P, Goudeau PH, Renault PO (2002) Measuring thin film and multilayer elastic constants by coupling in situ tensile testing with x-ray diffraction. Appl Phys Lett 80:4705–4707

    Google Scholar 

  • Baker SP, Keller-Flaig RM, Shu JB (2003) Bauschinger effect and anomalous thermomechanical deformation induced by oxygen in passivated thin Cu films on substrates. Acta Mater 51:3019–3036

    Google Scholar 

  • Benard WL, Kahn H, Heuer AH, Huff MA (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7:245–251

    Google Scholar 

  • Bradby JE, Kucheyev SO, Williams JS, Wong L, Swain MV, Munroe P, Li G, Phillips MR (2002) Indentation-induced damage in GaN epilayers. Appl Phys Lett 80:383–385

    Google Scholar 

  • Brenner A, Senderoff S (1949) Calculation of stress in electrodeposits from the curvature of a plated strip. J Res Natl Bur Stand 42:105–123

    Google Scholar 

  • Caceres D, Vergara I, Gonzalez R, Monroy E, Calle F, Munoz E, Omnes F (1999) Nanoindentation on AlGaN thin films. J Appl Phys 86:6773–6778

    Google Scholar 

  • Carlotti G, Colpani P, Piccolo D, Santucci S, Senez V, Socino G, Verdini L (2002) Measurement of elastic and viscoelastic properties of dielectric films used in microelectronics. Thin Solid Films 414:99–104

    Google Scholar 

  • Carmen MH, Murray TW, Krishnaswamy S (2002) Photoacoustic characterization of the mechanical properties of thin films. Appl Phys Lett 80:691–693

    Google Scholar 

  • Chae JH, Lee JY, Kang SW (1999) Measurement of thermal expansion coefficient of poly-Si using microgauge sensors. Sensors Actuators A Phys 75:222–229

    Google Scholar 

  • Chang WJ, Fang TH, Weng CI (2007) Thermoviscoelastic stresses in thin films/substrate system. Thin Solid Films 515:3693–3697

    Google Scholar 

  • Chen KS, Ou KS (2002) Modification of curvature-based thin-film residual stress measurement for MEMS applications. J Micromech Microeng 12:917–924

    MathSciNet  Google Scholar 

  • Chiu CC (1990) Determination of the elastic modulus and residual stresses in ceramic coating using a strain gage. J Am Ceram Soc 73:1999–2005

    Google Scholar 

  • Choi D, Shinavski RJ, Steffier WS, Spearing SM (2005) Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates. J Appl Phys 97:074904

    Google Scholar 

  • Cornella G, Lee SH, Nix WD, Bravman JC (1997) An analysis technique for extraction of thin film stresses from x-ray data. Appl Phys Lett 71:2949–2951

    Google Scholar 

  • Courtney TH (2000) Mechanical behavior of materials. McGraw Hill, Boston

    Google Scholar 

  • Elshabini-Riad AA, Fred D (1998) Thin film technology handbook. McGraw-Hill, New York

    Google Scholar 

  • Espinosa HD, Prorok BC, Fischer M (2003) A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J Mech Phys Solids 51:47–67

    Google Scholar 

  • Exadaktylos GE, Vardoulakis I, Kourkoulis SK (2001) Influence of nonlinearity and double elasticity on flexure of rock beams –I. Technical theory. Int J Solids Struct 38:4091–4117

    MATH  Google Scholar 

  • Fang W, Lo CY (2000) On the thermal expansion coefficients of thin films. Sensors Actuators A Phys 84:310–314

    Google Scholar 

  • Fang W, Wickert JA (1995) Comments on measuring thin-film stress using bi-layer micromachined beams. J Micromech Microeng 5:276–281

    Google Scholar 

  • Fang W, Wickert JA (1996) Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J Micromech Microeng 6:301–309

    Google Scholar 

  • Fang W, Tsai HC, Lo CY (1999) Determining thermal expansion coefficients of thin films using micromachined cantilevers. Sensors Actuators A Phys 77:21–27

    Google Scholar 

  • Fartash A, Grimsditch M, Fullerton EE, Schuller IK (1993) Breakdown of Poisson’s effect in Nb/Cu superlattices. Phys Rev B 47:12813–12919

    Google Scholar 

  • Feng ZC, Liu HD (1983) Generalized formula for curvature radius and layer stresses caused by thermal strain in semiconductor multilayer structures. J Appl Phys 54:83–85

    Google Scholar 

  • Florando JN, Nix WD (2005) A microbeam bending method for studying stress–strain relations for metal thin films on silicon substrates. J Mech Phys Solids 53:619–638

    MATH  Google Scholar 

  • Freund LB, Suresh S (2003) Thin film materials: stress; defect formation, and surface evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Freund LB, Floro JA, Chason E (1999) Extensions of the Stoney formula for substrate curvature to configurations with thin substrate or large deformations. Appl Phys Lett 74:1987–1989

    Google Scholar 

  • Fu YQ, Zhang S, Wu MJ, Huang WM, Du HJ, Luo JK, Flewitt AJ, Milne WI (2006) On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films 515:80–86

    Google Scholar 

  • Fullerton EE, Kumar S, Grimsditch M, Kelly DM, Schuller IK (1993) X-ray-diffraction characterization and sound-velocity measurements of W/Ni multilayers. Phys Rev B 48:2560–2567

    Google Scholar 

  • Gere JM, Timoshenko SP (1991) Mechanics of materials, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Godin M, Tabard-Cossa V, Grütter P (2001) Quantitative surface stress measurement using a microcantilever. Appl Phys Lett 79:551–553

    Google Scholar 

  • Guckel H, Randazzo T, Burns DW (1985) A simple technique for the determination of mechanical strain in thin films with application to polysilicon. J Appl Phys 57:1671–1675

    Google Scholar 

  • Gunnars J, Wiklund U (2002) Determination of growth-induced strain and thermo-elastic properties of coatings by curvature measurements. Mater Sci Eng A 336:7–21

    Google Scholar 

  • Haque MA, Saif MTA (2003) A review of MEMS-based microscale and nanoscale tensile and bending testing. Exp Mech 43:248–255

    Google Scholar 

  • Harms U, Gäertner M, Schütze A, Bewilogua K, Neuhäuser H (2001) Elastic and anelastic properties, internal stress and thermal expansion coefficient of cubic boron nitride films on silicon. Thin Solid Films 385:275–280

    Google Scholar 

  • Hoffman RW (1966) In: Hass G, Thun RE (eds) Physics of thin films, vol 3. Academic, New York

    Google Scholar 

  • Hommel M, Kraft O (2001) Deformation behavior of thin copper films on deformable substrates. Acta Mater 49:3935–3947

    Google Scholar 

  • Hsueh CH (2002) Modeling of elastic deformation of multilayers due to residual stresses and external bending. J Appl Phys 91:9652–9656

    Google Scholar 

  • Hsueh CH, Paranthaman M (2008) Analytical modeling of residual stresses in multilayered superconductor systems. J Mater Sci 43:6223–6232

    Google Scholar 

  • Hsueh CH, Lee S, Chuang TJ (2003) An alternative method of solving multilayer bending problems. Trans ASME J Appl Mech 70:151–154

    MATH  Google Scholar 

  • Hu YY, Huang WM (2004) Elastic and elastic–plastic analysis of multilayer thin films: closed-form solutions. J Appl Phys 96:4154–4160

    Google Scholar 

  • Huang WM, Gao XY, Tan JP (2001) Design of thin film based micro grippers. In: Proceedings of the SPIE: micromachining and microfabrication process technology and devices, vol 4601. Nanjing, pp 123–130

    Google Scholar 

  • Huang WM, Liu QY, Lm H, Yeo JH (2004a) Micro NiTi-Si cantilever with three stable positions. Sensors Actuators A Phys 114:118–122

    Google Scholar 

  • Huang WM, Hu YY, An L (2004b) A simple approach to determine five thermo mechanical properties of thin ductile films on an elastic substrate. Appl Phys Lett 85:6173–6175

    Google Scholar 

  • Jacobs SF, Bradford JN, Berthold JW (1970) Ultraprecise measurement of thermal expansion coefficient. Appl Opt 9:2477–2480

    Google Scholar 

  • Jain A, Rogojevic S, Gill WN, Plawsky JL, Matthew I, Tomozawa M, Simonyi E (2001) Effects of processing history on the modulus of silica xerogel films. J Appl Phys 90:5832–5834

    Google Scholar 

  • Janda M (1986) On the intrinsic stress in thin chromium films. Thin Solid Films 142:37–45

    Google Scholar 

  • Janda M, Stefan O (1984) Intrinsic stress in chromium thin films measured by a Novel method. Thin Solid Films 112:127–137

    Google Scholar 

  • Jeong J, Kwon D, Lee WS, Baik YJ (2001) Intrinsic stress in chemical vapor deposited diamond films: an analytical model for the plastic deformation of the Si substrate. J Appl Phys 90:1227–1236

    Google Scholar 

  • Jin XS, Kim CO, Lee YP, Zhou Y, Xu HB (2001) Simultaneous measurements of the magnetostrictive coefficient, Young’s modulus, and Poisson ratio thin films. Appl Phys Lett 79:650–652

    Google Scholar 

  • Kalkman AJ, Verbruggen AH, Janssen GCAM (2001) Young’s modulus measurements and grain boundary sliding in free-standing thin metal films. Appl Phys Lett 78:2673–2675

    Google Scholar 

  • Kim JS, Paik KW, Oh SH (1999) The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate. J Appl Phys 86:5474–5479

    Google Scholar 

  • Kim SH, Boyd JG, Mani S (2007) Mechanical behavior of mismatch strain-driven microcantilever. Microelectron J 38:371–380

    Google Scholar 

  • Kinzly RE (1967) A new interferometer capable of measuring small optical path difference. Appl Opt 6:137–140

    Google Scholar 

  • Klein CA (2000a) How accurate are Stoney’s equation and recent modifications. J Appl Phys 88:5487–5489

    Google Scholar 

  • Klein CA (2000b) Comment on “The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate” [J. Appl. Phys. 86. 5474 (1999)]. J Appl Phys 88:5499–5500

    Google Scholar 

  • Klein CA (2000c) Strains and stresses in multilayered elastic structures: the case of chemically vapor-deposited ZnS/ZnSe laminates. J Appl Phys 87:2265–2272

    Google Scholar 

  • Krulevitch P, Lee AP, Ramsey PB, Trevino JC, Hamilton J, Northrup MA (1996) Thin film shape memory alloy microactuators. J Microelectromech Syst 5:270–282

    Google Scholar 

  • Kucheyev SO, Bradby JE, Williams JS, Jagadish C, Toth M, Phillips MR, Swain MV (2000) Nanoindentation of epitaxial GaN films. Appl Phys Lett 77:3373–3375

    Google Scholar 

  • Lima MM, Lacerda RG, Vilcarromero J, Marques FC (1999) Coefficient of thermal expansion and elastic modulus of thin films. J Appl Phys 86:4936–4942

    Google Scholar 

  • Liu HC, Murarka SP (1992) Elastic and viscoelastic analysis of stress in thin films. J Appl Phys 72:3458–3463

    Google Scholar 

  • Maissel L, Glang R (1970) Handbook of thin film technology. McGraw-Hill, New York

    Google Scholar 

  • Malzbender J (2005) Comment on “A simple approach to determine five thermomechanical properties on thin ductile films on an elastic substrate” [Appl. Phys. Lett. 85, 6173 (2004)]. Appl Phys Lett 87:116101

    Google Scholar 

  • Malzbender J, Steinbrech RW (2003) Determination of the stress-dependent stiffness of plasma-sprayed thermal barrier coatings using depth-sensitive indentation. J Mater Res 18:1975–1983

    Google Scholar 

  • Malzbender J, Steinbrech RW (2004) Mechanical properties of coated materials and multi-layered composites determined using bending methods. Surf Coat Technol 176:165–172

    Google Scholar 

  • Mezin A (2006) Coating internal stress measurement through the curvature method: a geometry-based criterion delimiting the relevance of Stoney’s formula. Surf Coat Technol 200:5259–5267

    Google Scholar 

  • Nejhad MNG, Pan CL, Feng HW (2003) Intrinsic strain modeling and residual stress analysis for thin-film processing of layered structures. J Electron Packag 125:4–17

    Google Scholar 

  • Nie M, Huang QA, Li WH (2006) Measurement of residual stress in multilayered thin films by a full-field optical method. Sensors Actuators A Phys 126:93–97

    Google Scholar 

  • Nikishkov GP (2003) Curvature estimation for multilayer hinged structures with initial strains. J Appl Phys 94:5333–5336

    Google Scholar 

  • Nix WD (1989) Mechanical-properties of thin-films. Metall Trans A 20:2217–2245

    Google Scholar 

  • Nowak R, Pessa M, Suganma M, Leszczynski M, Grzegory I, Porowski S, Yoshida F (1999) Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal. Appl Phys Lett 75:2070–2072

    Google Scholar 

  • Ohring M (2002) The materials science of thin films: deposition and structure, 2nd edn. Academic, San Diego

    Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Google Scholar 

  • Olsen GH, Ettenberg M (1977) Calculated stresses in multilayered heteroepitaxial structures. J Appl Phys 48:2543–2547

    Google Scholar 

  • Osterberg PM, Senturia SD (1997) M-test: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6:107–118

    Google Scholar 

  • Petern KE (1978) Dynamic micromechanics on silicon: techniques and devices. IEEE Trans Electron Devices ED-25:1241–1250

    Google Scholar 

  • Rats D, Bimbault L, Vandenbulcke L, Herbin R, Badawi KF (1995) Crystalline quality and residual stresses in diamond layers by Raman and x-ray diffraction analyses. J Appl Phys 78:4994–5001

    Google Scholar 

  • Reinhart FK, Logan RA (1973) Interface stress of Al x Ga1−x As-GaAs layer structures. J Appl Phys 44:3171–3175

    Google Scholar 

  • Renault PO, Badawi KF, Bimbault L, Goudeau PH, ElkaЇm E, Lauriat JP (1998) Poisson’s ratio measurement in tungsten thin films combining an x-ray diffractometer with in situ tensile tester. Appl Phys Lett 73:1952–1954

    Google Scholar 

  • Retajczyk TF, Sinha AK (1980) Elastic stiffness and thermal expansion coefficient of BN films. Appl Phys Lett 36:161–163

    Google Scholar 

  • Röll K (1976) Analysis of stress and strain distribution in thin films and substrates. J Appl Phys 47:3224–3229

    Google Scholar 

  • Saul RH (1969) Effect of a GaAs x P1−x transition zone on the perfection of GaP crystals grown by deposition onto GaAs substrates. J Appl Phys 40:3273–3279

    Google Scholar 

  • Schäfer JD, Näfe H, Aldinger F (1999) Macro- and microstress analysis in sol–gel derived Pb (Zr x Ti1−x ) O3 thin films. J Appl Phys 85:8023–8031

    Google Scholar 

  • Singh J (1993) Physics of semiconductors and their heterostructures. McGraw-Hill, New York

    Google Scholar 

  • Srikar VT, Spearing SM (2003) A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems. Exp Mech 43:238–247

    Google Scholar 

  • Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond Ser A 82:172–175

    Google Scholar 

  • Su JF (2004) Indentation and laser annealing of NiTi shape memory alloys. MEng thesis, Nanyang Technological University, Singapore

    Google Scholar 

  • Su YJ, Qian CF, Zhao MH (2000) Microbridge testing of silicon oxide/silicon nitride bilayer films deposited on silicon wafers. Acta Mater 48:4901–4915

    Google Scholar 

  • Suo Z, Ma EY, Gleskova H, Wagner S (1999) Mechanics of rollable and foldable film-on-foil electronics. Appl Phys Lett 74:1177–1179

    Google Scholar 

  • Tada H, Kumpel AE, Lathrop RE, Slanina JB, Nieva P, Zavracky MIN, Wong PY (2000) Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J Appl Phys 87:4189–4193

    Google Scholar 

  • Taylor CA, Wayne MF, Chiu KS (2003) Heat treatment of thin carbon films and the effect on residual stress, modulus thermal expansion and microstructure. Carbon 41:1867–1875

    Google Scholar 

  • Teixeira V (2001) Mechanical integrity in PVD coatings due to the presence of residual stresses. Thin Solid Films 392:276–281

    Google Scholar 

  • Thurn J, Hughey MP (2004) Evaluation of film biaxial modulus and coefficient of thermal expansion from thermoelastic film stress measurements. J Appl Phys 95:7892–7897

    Google Scholar 

  • Tien CL, Lee CC, Tsai TL, Sun WS (2001) Determination of the mechanical properties of thin films by digital phase shifting interferometry. Opt Commun 198:325–331

    Google Scholar 

  • Timoshenko S (1925) Analysis of bi-metal thermostats. J Opt Soc Am 11:233–255

    Google Scholar 

  • Townsend PH, Barnett DM, Brunner TA (1987) Elastic relationship in layered composite media with approximation for the case of thin films on a thick substrate. J Appl Phys 62:4438–4444

    Google Scholar 

  • Trochu F, Qian YY (1997) Nonlinear finite element simulation of superelastic shape memory alloy parts. Comput Struct 62:799–810

    MATH  Google Scholar 

  • Tsai SH, Wang YT, Kan HC (2009) Analysis on the uniformly loaded rectangular cross-section cantilever by a modified load-deflection model. J Phys D Appl Phys 42:045505

    Google Scholar 

  • Tsui TY, Pharr GM (1999) Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J Mater Res 14:292–301

    Google Scholar 

  • Varguez P, Aviles F, Oliva AI (2008) Mechanical properties of gold nanometric films onto a polymeric substrate. Surf Coat Technol 202:1556–1563

    Google Scholar 

  • Vilms J, Kerps D (1982) Simple stress formula for multilayered thin films on a thick substrate. J Mater Res 3:1536–1537

    Google Scholar 

  • Wu MJ (2009) Surface metrology and optical properties of thin film shape memory alloys. PhD dissertation, Nanyang Technological University, Singapore

    Google Scholar 

  • Xu WH, Lu DX, Zhang TY (2001) Determination of residual stresses in Pb(Zr0.53Ti0.47)O3 thin films with Raman spectroscopy. Appl Phys Lett 79:4112–4114

    Google Scholar 

  • Yu J, Kim JG, Chung JO, Cho DH (2000) An elastic/plastic analysis of the intrinsic stresses in chemical vapor deposited diamond films on silicon substrates. J Appl Phys 88:1688–1694

    Google Scholar 

  • Yuan HR, Hichwa BP, Allen TH (1998) Noncontact method for measuring coefficient of linear thermal expansion of thin films. J Vac Sci Technol A Vac Surf Film 16:3119–3122

    Google Scholar 

  • Zhang TY, Su YJ, Qian CF (2000) Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Mater 48:2843–2857

    Google Scholar 

  • Zhang XC, Xu BS, Wang HD, Wu YX (2005) Error analyses on some typically approximate solutions of residual stress within a thin film on a substrate. J Appl Phys 98:053516-1–053516-5

    Google Scholar 

  • Zhao JH (2000) Thermomechanical properties and phase transition of thin and ultra-thin films. PhD dissertation, The University of Texas, Austin

    Google Scholar 

  • Zhao JH, Ryan T, Ho PS, McKerrow AJ, Shih WY (1999) Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films. J Appl Phys 85:6421–6424

    Google Scholar 

  • Zhao JH, Kiene M, Hu C, Ho PS (2000a) Thermal stress and glass transition of ultrathin polystyrene films. Appl Phys Lett 77:2843–2845

    Google Scholar 

  • Zhao JH, Du Y, Morgen M, Ho PS (2000b) Simultaneous measurement of Young’s modulus, Poisson ratio, and coefficient of thermal expansion of thin films on substrates. J Appl Phys 87:1575–1577

    Google Scholar 

  • Zheng DW, Xu YH, Tsai YP, Tu KN, Patterson ZB, Liu QZ, Brongo M (2000) Mechanical property measurement of thin polymeric-low dielectric-constant films using bulge testing method. Appl Phys Lett 76:2008–2010

    Google Scholar 

  • Zhou JB, Wu JS, Yang YX (1999) Research on the thermal expansion behavior of anodic films on aluminum. Thin Solid Films 346:280–283

    Google Scholar 

  • Ziebart V (1999) Mechanical properties of CMOS thin films. PhD dissertation, Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Zoo Y, Adams D, Mayer JW, Alford TL (2006) Investigation of coefficient of thermal expansion of silver thin film on different substrates using X-ray diffraction. Thin Solid Films 513:170–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yong Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

Hu, Y.Y., Huang, W.M. (2013). Thermal Stress Analysis and Characterization of Thermomechanical Properties of Thin Films on an Elastic Substrate. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics