Skip to main content

High-Throughput Lipidomic and Metabolomic Profiling for Brain Tissue and Biofluid Samples in Neurodegenerative Disorders

  • Protocol
  • First Online:
Biomarkers for Alzheimer’s Disease Drug Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2785))

Abstract

Recent research has revealed the potential of lipidomics and metabolomics in identifying new biomarkers and mechanistic insights for neurodegenerative disorders. To contribute to this promising area, we present a detailed protocol for conducting an integrated lipidomic and metabolomic profiling of brain tissue and biofluid samples. In this method, a single-phase methanol extraction is employed for extracting both nonpolar and highly polar lipids and metabolites from each biological sample. The extracted samples are then subjected to liquid chromatography-mass spectrometry-based assays to provide relative or semiquantitative measurements for hundreds of selected lipids and metabolites per sample. This high-throughput approach enables the generation of new hypotheses regarding the mechanistic and functional significance of lipid and metabolite alterations in neurodegenerative disorders while also facilitating the discovery of new biomarkers to support drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617. https://doi.org/10.1093/nar/gkx1089

    Article  CAS  PubMed  Google Scholar 

  2. Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist’s guide to lipidomics. Nat Rev Neurosci 8(10):743–754. https://doi.org/10.1038/nrn2233

    Article  CAS  PubMed  Google Scholar 

  3. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610. https://doi.org/10.1038/nrd1776

    Article  CAS  PubMed  Google Scholar 

  5. Alarcon-Barrera JC, Kostidis S, Ondo-Mendez A, Giera M (2022) Recent advances in metabolomics analysis for early drug development. Drug Discov Today 27(6):1763–1773

    Article  CAS  PubMed  Google Scholar 

  6. Logan T, Simon MJ, Rana A, Cherf GM, Srivastava A, Davis SS, Low RLY, Chiu CL, Fang M, Huang F, Bhalla A, Llapashtica C, Prorok R, Pizzo ME, Calvert MEK, Sun EW, Hsiao-Nakamoto J, Rajendra Y, Lexa KW, Srivastava DB, van Lengerich B, Wang J, Robles-Colmenares Y, Kim DJ, Duque J, Lenser M, Earr TK, Nguyen H, Chau R, Tsogtbaatar B, Ravi R, Skuja LL, Solanoy H, Rosen HJ, Boeve BF, Boxer AL, Heuer HW, Dennis MS, Kariolis MS, Monroe KM, Przybyla L, Sanchez PE, Meisner R, Diaz D, Henne KR, Watts RJ, Henry AG, Gunasekaran K, Astarita G, Suh JH, Lewcock JW, DeVos SL, Di Paolo G (2021) Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell 184(18):4651–4668. https://doi.org/10.1016/j.cell.2021.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Root J, Mendsaikhan A, Nandy S, Taylor G, Wang M, Araujo LT, Merino P, Ryu D, Holler C, Thompson BM, Astarita G, Blain J-F, Kukar T (2023) Granulins rescue inflammation, lysosome dysfunction, and neuropathology in a mouse model of progranulin deficiency. bioRxiv:2023.2004.2017.536004. https://doi.org/10.1101/2023.04.17.536004

  8. Rhinn H, Tatton N, McCaughey S, Kurnellas M, Rosenthal A (2022) Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol Sci 43(8):641–652

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Z, Xu Y (2010) An extremely simple method for extraction of lysophospholipids and phospholipids from blood samples. J Lipid Res 51(3):652–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Bhalla A, Ullman JC, Fang M, Ravi R, Arguello A, Thomsen E, Tsogtbaatar B, Guo JL, Skuja LL, Dugas JC, Davis SS, Poda SB, Gunasekaran K, Costanzo S, Sweeney ZK, Henry AG, Harris JM, Henne KR, Astarita G (2020) High-throughput liquid chromatography-tandem mass spectrometry quantification of Glycosaminoglycans as biomarkers of Mucopolysaccharidosis II. Int J Mol Sci 21(15):5449. https://doi.org/10.3390/ijms21155449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ullman JC, Arguello A, Getz JA, Bhalla A, Mahon CS, Wang J, Giese T, Bedard C, Kim DJ, Blumenfeld JR, Liang N, Ravi R, Nugent AA, Davis SS, Ha C, Duque J, Tran HL, Wells RC, Lianoglou S, Daryani VM, Kwan W, Solanoy H, Nguyen H, Earr T, Dugas JC, Tuck MD, Harvey JL, Reyzer ML, Caprioli RM, Hall S, Poda S, Sanchez PE, Dennis MS, Gunasekaran K, Srivastava A, Sandmann T, Henne KR, Thorne RG, Di Paolo G, Astarita G, Diaz D, Silverman AP, Watts RJ, Sweeney ZK, Kariolis MS, Henry AG (2020) Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci Transl Med 12(545). https://doi.org/10.1126/scitranslmed.aay1163

  12. Nugent AA, Lin K, van Lengerich B, Lianoglou S, Przybyla L, Davis SS, Llapashtica C, Wang J, Kim DJ, Xia D, Lucas A, Baskaran S, Haddick PCG, Lenser M, Earr TK, Shi J, Dugas JC, Andreone BJ, Logan T, Solanoy HO, Chen H, Srivastava A, Poda SB, Sanchez PE, Watts RJ, Sandmann T, Astarita G, Lewcock JW, Monroe KM, Di Paolo G (2020) TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105(5):837–854. https://doi.org/10.1016/j.neuron.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  13. Crotty GF, Maciuca R, Macklin EA, Wang J, Montalban M, Davis SS, Alkabsh JI, Bakshi R, Chen X, Ascherio A, Astarita G, Huntwork-Rodriguez S, Schwarzschild MA (2020) Association of caffeine and related analytes with resistance to Parkinson disease among LRRK2 mutation carriers: a metabolomic study. Neurology 95(24):e3428–e3437. https://doi.org/10.1212/WNL.0000000000010863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhalla A, Ravi R, Fang M, Arguello A, Davis SS, Chiu CL, Blumenfeld JR, Nguyen HN, Earr TK, Wang J, Astarita G, Zhu Y, Fiore D, Scearce-Levie K, Diaz D, Cahan H, Troyer MD, Harris JM, Escolar ML (2020) Characterization of fluid biomarkers reveals lysosome dysfunction and neurodegeneration in neuronopathic MPS II patients. Int J Mol Sci 21(15):5188. https://doi.org/10.3390/ijms21155188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andreone BJ, Przybyla L, Llapashtica C, Rana A, Davis SS, van Lengerich B, Lin K, Shi J, Mei Y, Astarita G, Di Paolo G, Sandmann T, Monroe KM, Lewcock JW (2020) Alzheimer’s-associated PLCgamma2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia. Nat Neurosci 23(8):927–938. https://doi.org/10.1038/s41593-020-0650-6

    Article  CAS  PubMed  Google Scholar 

  16. Burger B, Vaudel M, Barsnes H (2020) Importance of block randomization when designing proteomics experiments. J Proteome Res 20(1):122–128

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thompson, B.M., Astarita, G. (2024). High-Throughput Lipidomic and Metabolomic Profiling for Brain Tissue and Biofluid Samples in Neurodegenerative Disorders. In: Perneczky, R. (eds) Biomarkers for Alzheimer’s Disease Drug Development. Methods in Molecular Biology, vol 2785. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3774-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3774-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3773-9

  • Online ISBN: 978-1-0716-3774-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics