Skip to main content

Data Analysis Pipeline for scRNA-seq Experiments to Study Early Oogenesis

  • Protocol
  • First Online:
Germ Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2770))

  • 629 Accesses

Abstract

Germ cells as the means for the transmission of genetic information between generations have been a hot topic of research for decades. The analysis of the transcriptomes, that is of the RNA transcripts produced by the genotype at a given time, of germ cells and the surrounding somatic cells, is essential to unravel the cellular and molecular processes regulating gametogenesis. However, the asynchronized differentiation of germ cells and high cellular heterogeneity in the developing ovary or testis represent two unsurmountable challenges for delineating the transcription regulation mechanism of germ cells using traditional bulk RNA sequencing. By performing single-cell RNA sequencing (scRNA-seq), it is now possible to dissect the transcriptome of germ cell development at single-cell resolution, and apply powerful bioinformatics methods to translate raw sequencing data into meaningful information. Here, using the 10× Genomic platform and the most widely cited bioinformatics tools, we describe how to analyze early female germ cell development using scRNA-seq data generated from mouse E11.5 to E14.5 ovaries. This pipeline will provide a guide for exploring the processes of early germ cell development at single-cell resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Farini D, De Felici M (2022) The beginning of meiosis in mammalian female germ cells: a never-ending story of intrinsic and extrinsic factors. Int J Mol Sci 23(20):12571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Egozcue S, Blanco J, Vendrell JM, Garcia F, Veiga A, Aran B, Barri PN, Vidal F, Egozcue J (2000) Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum Reprod Update 6(1):93–105

    Article  CAS  PubMed  Google Scholar 

  3. Shah K, Sivapalan G, Gibbons N, Tempest H, Griffin DK (2003) The genetic basis of infertility. Reproduction 126(1):13–25

    Article  CAS  PubMed  Google Scholar 

  4. Bullejos M, Koopman P (2004) Germ cells enter meiosis in a rostro-caudal wave during development of the mouse ovary. Mol Reprod Dev 68(4):422–428

    Article  CAS  PubMed  Google Scholar 

  5. Soh YQ, Junker JP, Gill ME, Mueller JL, van Oudenaarden A, Page DC (2015) A gene regulatory program for meiotic prophase in the fetal ovary. PLoS Genet 11(9):e1005531

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li X, Wang CY (2021) From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci 13(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aldridge S, Teichmann SA (2020) Single cell transcriptomics comes of age. Nat Commun 11(1):4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ge W, Wang JJ, Zhang RQ, Tan SJ, Zhang FL, Liu WX, Li L, Sun XF, Cheng SF, Dyce PW, De Felici M, Shen W (2021) Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cell Mol Life Sci 78(2):695–713

    Article  CAS  PubMed  Google Scholar 

  10. Niu W, Spradling AC (2020) Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci U S A 117(33):20015–20026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang JJ, Ge W, Zhai QY, Liu JC, Sun XW, Liu WX, Li L, Lei CZ, Dyce PW, De Felici M, Shen W (2020) Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biol 18(12):e3001025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA (2016) Classification of low quality cells from single-cell RNA-seq data. Genome Biol 17:29

    Article  PubMed  PubMed Central  Google Scholar 

  13. McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8(4):329–337 e324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tung PY, Blischak JD, Hsiao CJ, Knowles DA, Burnett JE, Pritchard JK, Gilad Y (2017) Batch effects and the effective design of single-cell gene expression studies. Sci Rep 7:39921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh PR, Raychaudhuri S (2019) Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods 16(12):1289–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177(7):1888–1902. e1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018) Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36(5):421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polanski K, Young MD, Miao Z, Meyer KB, Teichmann SA, Park JE (2020) BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36(3):964–965

    Article  CAS  PubMed  Google Scholar 

  19. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, Chen J (2020) A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol 21(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (32100683 and 32270903), the Natural Science Foundation of Shandong Province, China (ZR2021QC003), the National Key Research and Development Program of China (2018YFC1003400), and the Taishan Scholar Youth Expert Program of Shandong Province (tsqn202211194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ge, W., Zhang, T., Zhou, Y., Shen, W. (2024). Data Analysis Pipeline for scRNA-seq Experiments to Study Early Oogenesis. In: Barchi, M., De Felici, M. (eds) Germ Cell Development. Methods in Molecular Biology, vol 2770. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3698-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3698-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3697-8

  • Online ISBN: 978-1-0716-3698-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics