Skip to main content

Mechanical Actuation of Organoids in Synthetic Microenvironments

  • Protocol
  • First Online:
3D Cell Culture

Abstract

Organoids are a powerful model system to explore the role of mechanical forces in sculpting emergent tissue cytoarchitecture. The modulation of the mechanical microenvironment is most readily performed using synthetic extracellular matrices (ECM); however, such materials provide passive, rather than active force modulation. Actuation technologies enable the active tuning of mechanical forces in both time and magnitude. Using such instruments, our group has shown that extrinsically imposed stretching on human neural tube organoids (hNTOs) enhanced patterning of the floor plate domain. Here, we provide a detailed protocol on the implementation of mechanical actuation of organoids embedded in synthetic 3D microenvironments, with additional details on methods to characterize organoid fate and behavior. Our protocol is easy to reproduce and is expected to be broadly applicable to investigate the role of active mechanics with in vitro model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cayuso J, Martí E (2005) Morphogens in motion: growth control of the neural tube. J Neurobiol 64:376–387

    Article  PubMed  Google Scholar 

  2. Subramanian L, Calcagnotto ME, Paredes MF (2020) Cortical malformations: lessons in human brain development. Front Cell Neurosci 13:576

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nikolopoulou E, Galea GL, Rolo A et al (2017) Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144(4):552

    Article  CAS  PubMed  Google Scholar 

  4. Colas JF, Schoenwolf GC (2001) Towards a cellular and molecular understanding of neurulation. Dev Dyn 221:117–145

    Article  CAS  PubMed  Google Scholar 

  5. Ishihara K, Ranga A, Lutolf MP et al (2017) Reconstitution of a patterned neural tube from single mouse embryonic stem cells. In: Tsuji T (ed) Organ regeneration: 3D stem cell culture and manipulation. Methods in molecular biology, vol 1597. Humana, New York, pp 43–55

    Chapter  Google Scholar 

  6. Ranga A, Girgin M, Meinhardt A et al (2016) Neural tube morphogenesis in synthetic 3D microenvironments. Proc Natl Acad Sci U S A 113(44):E6831–E6839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rammensee S, Kang MS, Georgiou K et al (2017) Dynamics of mechanosensitive neural stem cell differentiation. Stem Cells 35(2):497–506

    Article  CAS  PubMed  Google Scholar 

  8. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  9. Karzbrun E, Khankhel AH, Megale HC et al (2021) Human neural tube morphogenesis in vitro by geometric constraints. Nature 599(7884):268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang YJ, Tsai CJ, Tseng FG et al (2013) Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. Nanomedicine 9(3):345–355

    Article  CAS  PubMed  Google Scholar 

  11. Abdel Fattah AR, Daza B, Rustandi G et al (2021) Actuation enhances patterning in human neural tube organoids. Nat Commun 12(1):1–13

    Article  Google Scholar 

  12. Abdel Fattah AR et al (2023) Targeted mechanical stimulation via magnetic nanoparticles guides in vitro tissue development. Nat Commun 14:5281. https://doi.org/10.1038/s41467-023-41037-8

  13. Abdel Fattah AR, Ranga A (2020) Nanoparticles as versatile tools for mechanotransduction in tissues and organoids. Front Bioeng Biotechnol 8:240. https://doi.org/10.3389/fbioe.2020.00240

  14. Abdel Fattah AR, Grebenyuk S, de Rooij LPMH, Salmon I, Ranga A (2023) Neuroepithelial organoid patterning is mediated by a neighborhood watch mechanism. Cell Reports 42:113334. https://doi.org/10.1016/j.celrep.2023.113334

  15. Gjorevski N, Lutolf MP (2017) Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat Protoc 12(11):2263–2274

    Article  CAS  PubMed  Google Scholar 

  16. Rosenzweig DH, Solar-Cafaggi S, Quinn TM (2012) Functionalization of dynamic culture surfaces with a cartilage extracellular matrix extract enhances chondrocyte phenotype against dedifferentiation. Acta Biomater 8(9):3333–3341

    Article  CAS  PubMed  Google Scholar 

  17. Supek F, Bošnjak M, Škunca N et al (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6(7):e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eden E, Navon R, Steinfeld I et al (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform 10(1):1–7

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the FWO grants G087018N, G0ACA24N and I009718N, FWO postdoctoral fellowship 1217220 N, FWO doctoral scholarships 11K722N and 11M5323N, Interreg Biomat-on-Chip grant and Vlaams-Brabant and Flemish Government co-financing, KU Leuven grants C14/17/111, C32/17/027, IDN/22/012 and IDN/20/007, King Baudouin Foundation grant J1810950-207421 and an Allen Distinguished Investigator Award, a Paul G. Allen Frontiers Group advised grant of the Paul G. Allen Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdel Rahman Abdel Fattah or Adrian Ranga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sgualdino, F., Mattolini, L., Jimenez, B.D., Patrick, K., Abdel Fattah, A.R., Ranga, A. (2024). Mechanical Actuation of Organoids in Synthetic Microenvironments. In: Sumbalova Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 2764. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3674-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3674-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3673-2

  • Online ISBN: 978-1-0716-3674-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics