Skip to main content

From Cell States to Cell Fates: Control of Cell State Transitions

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2745))

Abstract

We examine the coordinated behavior of thousands of genes in cell fate transitions through genome expression as an integrated dynamical system using the concepts of self-organized criticality and coherent stochastic behavior. To quantify the effects of the collective behavior of genes, we adopted the flux balance approach and developed it in a new tool termed expression flux analysis (EFA). Here we describe this tool and demonstrate how its application to specific experimental genome-wide expression data provides new insights into the dynamics of the cell-fate transitions. Particularly, we show that in cell fate change, specific stochastic perturbations can spread over the entire system to guide distinct cell fate transitions through switching cyclic flux flow in the genome engine. Utilization of EFA enables us to elucidate a unified genomic mechanism for when and how cell-fate change occurs through critical transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

atRA:

all-trans retinoic acid

CM:

center of mass

CP:

critical point

CSB:

coherent stochastic behavior

CV:

coefficient of variation

DMSO:

dimethyl sulfoxide

EFA:

expression flux analysis

EGF:

epidermal growth factor

GA:

genome attractor

HRG:

Heregulin

nrmsf:

normalized root mean square fluctuation

PAD:

pericentromeric-associated domain

PCA:

principal component analysis

SOC:

self-organized criticality

References

  1. Tsuchiya M, Hashimoto M, Takenaka Y, Motoike NI, Yoshikawa K (2014) Global genetic response in a cancer cell: self-organized coherent expression dynamics. PLoS One 9:e97411

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mojtahedi M, Skupin A, Zhou J, Castaño IG, Leong-Quong RY, Chang H et al (2016) Cell fate decision as high-dimensional critical state transition. PLoS Biol 14:e2000640

    Article  PubMed  PubMed Central  Google Scholar 

  3. Takahashi KS, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17:183–193

    Article  CAS  PubMed  Google Scholar 

  4. Zimatore G, Tsuchiya M, Hashimoto M, Kasperski A, Giuliani A (2021) Self-organization of whole-gene expression through coordinated chromatin structural transition. Biophys Rev 2:031303

    Article  CAS  Google Scholar 

  5. Krigerts J, Salmina K, Freivalds T, Zayakin P, Rumnieks F, Inashkina I et al (2021) Differentiating cancer cells reveal early large-scale genome regulation by pericentric domains. Biophys J 120:711–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshikawa K (2002) Field hypothesis on the self-regulation of gene expression. J Biol Phys 28:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferreiro DU, Hegler JA, Komives E, Wolynes PG (2011) On the role of frustration in the energy landscape of allosteric proteins. Proc Natl Acad Sci U S A 108:3499–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59:381–384

    Article  CAS  PubMed  Google Scholar 

  10. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364

    Article  CAS  Google Scholar 

  11. Bak P, Chen K (1991) Self-organized criticality. Sci Am 264:46–53

    Article  Google Scholar 

  12. Noble D (2006) The music of life. Oxford University Press, Oxford

    Book  Google Scholar 

  13. Tsuchiya M, Giuliani A, Zimatore G, Erenpreisa J, Yoshikawa K (2022) A unified genomic mechanism of cell-fate change. Results Probl Cell Differ 70:35–69

    Article  CAS  PubMed  Google Scholar 

  14. Tsuchiya M, Giuliani A, Hashimoto M, Erenpreisa J, Yoshikawa K (2015) Emergent self-organized criticality in gene expression dynamics: temporal development of global phase transition revealed in a cancer cell line. PLoS One 11:e0128565

    Article  Google Scholar 

  15. Tsuchiya M, Giuliani A, Hashimoto M, Erenpreisa J, Yoshikawa K (2016) Self-organizing global gene expression regulated through criticality: mechanism of the cell-fate change. PLoS One 11:e0167912

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tsuchiya M, Giuliani A, Yoshikawa K (2020) Cell-fate determination from embryo to cancer development: genomic mechanism elucidated. Int J Mol Sci 21:4581–4617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saeki Y, Endo T, Ide K, Nagashima T, Yumoto N, Toyoda T et al (2009) Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells. BMC Genomics 10:545

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang S, Eichier G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94:128701–128705

    Article  PubMed  Google Scholar 

  19. Yan L, Yang M, Guo H, Yang L, Wu J, Li R et al (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20:1131–1139

    Article  CAS  PubMed  Google Scholar 

  20. Deng Q, Ramsköl D, Reinius B, Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343:193–196

    Article  CAS  PubMed  Google Scholar 

  21. Misteli T (2020) The self-organizing genome: principles of genome architecture and function. Cell 183:28–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Censi F, Giuliani A, Bartolini P, Calcagnini G (2011) A multiscale graph theoretical approach to gene regulation networks: a case study in atrial fibrillation. IEEE Trans Biomed Eng 99:1–5

    Google Scholar 

  23. Bancaud A, Lavelle C, Huet S, Ellenberg J (2012) A fractal model for nuclear organization: current evidence and biological implications. Nucleic Acids Res 40:8783–8792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsuchiya M, Giuliani A, Yoshikawa K (2017) Single-cell reprogramming in mouse embryo development through a critical transition state. Entropy 19:584

    Article  Google Scholar 

  25. Nagashima T, Shimodaira H, Ide K, Nakakuki T, Tani Y, Takahashi K et al (2007) Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. J Biol Chem 282:4045–4056

    Article  CAS  PubMed  Google Scholar 

  26. Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K, Nagashima T et al (2010) Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 141:884–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jizba P, Arimitsu T (2004) On observability of Rényi’s entropy. Phys Rev E 69:026128

    Article  Google Scholar 

  28. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479–487

    Article  Google Scholar 

  29. Parrondo J, Horowitz J, Sagawa T (2015) Thermodynamics of information. Nat Phys 11:131–139

    Article  CAS  Google Scholar 

  30. Gavrilov M, Chétrite R, Bechhoefer J (2017) Direct measurement of weakly nonequilibrium system entropy is consistent with Gibbs-Shannon form. Proc Natl Acad Sci U S A 114:11097–11102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giuliani A, Tsuchiya M, Yoshikawa K (2018) Self-organization of genome expression from embryo to terminal cell fate: single-cell statistical mechanics of biological regulation. Entropy 20:13

    Article  Google Scholar 

  32. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  33. McClintick JN, Edenberg HJ (2006) Effects of filtering by present call on analysis of microarray experiments. BMC Bioinform 7:49

    Article  Google Scholar 

  34. Laughlin RB, Pines D, Schmalian J, Stojkovic BP, Wolynes P (2000) The middle way. Proc Natl Acad Sci U S A 97:32–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giuliani A, Zbilut JP, Conti F, Manetti C, Miccheli A (2004) Invariant features of metabolic networks: a data analysis application on scaling properties of biochemical pathways. Physica A 337:157–170

    Article  CAS  Google Scholar 

  36. Linderman GC, Zhao J, Roulis M, Bielecki P, Flavell RA, Nadler B, Kluger Y (2022) Zero-preserving imputation of single-cell RNA-seq data. Nat Commun 13:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MT sincerely thanks Prof. Mariano Bizzarri for his editorial work, Prof. Kenichi Yoshikawa for his supports on cell-fate project over the years, and the following institution and individuals who helped complete this research project: the SEIKO Life Science Laboratory, Osaka, Japan, his family (particularly, his daughters: Drs. Kimiko and Kazumi Tsuchiya, and Dr. Harry Taylor), and Dr. Daisaku Ikeda.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tsuchiya, M., Giuliani, A., Brazhnik, P. (2024). From Cell States to Cell Fates: Control of Cell State Transitions. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 2745. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3577-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3577-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3576-6

  • Online ISBN: 978-1-0716-3577-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics