Skip to main content

Understanding Cell Differentiation Through Single-Cell Approaches: Conceptual Challenges of the Systemic Approach

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2745))

  • 640 Accesses

Abstract

The cells of a multicellular organism are derived from a single zygote and genetically almost identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17(7):413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105(7):829–841

    Article  CAS  PubMed  Google Scholar 

  4. Wagner A, Regev A, Yosef N (2016) Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol 34(11):1145–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5(11):873–878

    Article  CAS  PubMed  Google Scholar 

  6. Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y et al (2020) Construction of a human cell landscape at single-cell level. Nature 581(7808):303–309

    Article  CAS  PubMed  Google Scholar 

  7. Mincarelli L, Lister A, Lipscombe J, Macaulay IC (2018) Defining cell identity with single-cell omics. Proteomics 18(18):1700312

    Article  PubMed  PubMed Central  Google Scholar 

  8. Morris SA (2019) The evolving concept of cell identity in the single cell era. Klein A, Treutlein B, editors. Development 146(12):dev169748

    Article  CAS  PubMed  Google Scholar 

  9. Laplane L, Solary E (2019) Towards a classification of stem cells. eLife 8:e46563

    Article  PubMed  PubMed Central  Google Scholar 

  10. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163(7):1663–1677

    Article  CAS  PubMed  Google Scholar 

  11. Blakeley P, Fogarty NME, del Valle I, Wamaitha SE, Hu TX, Elder K et al (2015) Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142(18):3151–3165

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amir ED, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gut G, Tadmor MD, Pe’er D, Pelkmans L, Liberali P (2015) Trajectories of cell-cycle progression from fixed cell populations. Nat Methods 12(10):951–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moussy A, Cosette J, Parmentier R, da Silva C, Corre G, Richard A et al (2017) Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment. Huang S, editor. PLoS Biol 15(7):e2001867

    Article  PubMed  PubMed Central  Google Scholar 

  16. Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P et al (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34(6):637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stockholm D, Edom-Vovard F, Coutant S, Sanatine P, Yamagata Y, Corre G et al (2010) Bistable cell fate specification as a result of stochastic fluctuations and collective spatial cell behaviour. PLoS One 5(12):e14441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yin Z, Sadok A, Sailem H, McCarthy A, Xia X, Li F et al (2013) A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. Nat Cell Biol 15(7):860–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ezer D, Moignard V, Göttgens B, Adryan B (2016) Determining physical mechanisms of gene expression regulation from single cell gene expression data. PLoS Comput Biol 12(8):e1005072

    Article  PubMed  PubMed Central  Google Scholar 

  20. Furusawa C, Kaneko K (2012) A dynamical-systems view of stem cell biology. Science 338(6104):215–217

    Article  CAS  PubMed  Google Scholar 

  21. Huang S (2012) The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-Darwinian biology? BioEssays News Rev Mol Cell Dev Biol 34(2):149–157

    Article  CAS  Google Scholar 

  22. Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. Development 136(23):3853–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waddington CH (2014) The strategy of the genes. Routledge, London, 274 p

    Book  Google Scholar 

  24. Hume DA (2000) Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96(7):2323–2328

    Article  CAS  PubMed  Google Scholar 

  25. Ko MS (1991) A stochastic model for gene induction. J Theor Biol 153(2):181–194

    Article  CAS  PubMed  Google Scholar 

  26. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186

    Article  CAS  PubMed  Google Scholar 

  27. Balázsi G, van Oudenaarden A, Collins JJ (2011) Cellular decision making and biological noise: from microbes to mammals. Cell 144(6):910–925

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen H, Larson DR (2016) What have single-molecule studies taught us about gene expression? Genes Dev 30(16):1796–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larson DR, Singer RH, Zenklusen D (2009) A single molecule view of gene expression. Trends Cell Biol 19(11):630–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corre G, Stockholm D, Arnaud O, Kaneko G, Viñuelas J, Yamagata Y et al (2014) Stochastic fluctuations and distributed control of gene expression impact cellular memory. PLoS One 9(12):e115574

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lestas I, Vinnicombe G, Paulsson J (2010) Fundamental limits on the suppression of molecular fluctuations. Nature 467(7312):174–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schwanhäusser B, Wolf J, Selbach M, Busse D (2013) Synthesis and degradation jointly determine the responsiveness of the cellular proteome. BioEssays News Rev Mol Cell Dev Biol 35(7):597–601

    Article  Google Scholar 

  33. Dodd IB, Micheelsen MA, Sneppen K, Thon G (2007) Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129(4):813–822

    Article  CAS  PubMed  Google Scholar 

  34. Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291(5505):843–847

    Article  CAS  PubMed  Google Scholar 

  35. Phair RD, Scaffidi P, Elbi C, Vecerová J, Dey A, Ozato K et al (2004) Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24(14):6393–6402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turner BM (2012) The adjustable nucleosome: an epigenetic signaling module. Trends Genet 28(9):436–444

    Article  CAS  PubMed  Google Scholar 

  37. Reid MA, Dai Z, Locasale JW (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19(11):1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sivanand S, Viney I, Wellen KE (2018) Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem Sci 43(1):61–74

    Article  CAS  PubMed  Google Scholar 

  39. Cyr AR, Domann FE (2011) The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15(2):551–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kupiec JJ (1997) A Darwinian theory for the origin of cellular differentiation. Mol Gen Genet MGG 255(2):201–208

    Article  CAS  PubMed  Google Scholar 

  41. Kupiec JJ (1996) A chance-selection model for cell differentiation. Cell Death Differ 3(4):385–390

    CAS  PubMed  Google Scholar 

  42. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934

    Article  CAS  PubMed  Google Scholar 

  43. Paldi A (2012) What makes the cell differentiate? Prog Biophys Mol Biol 110(1):41–43

    Article  PubMed  Google Scholar 

  44. Paldi A (2003) Stochastic gene expression during cell differentiation: order from disorder? Cell Mol Life Sci 60(9):1775–1778

    Article  CAS  PubMed  Google Scholar 

  45. Paldi A (2020) Stochastic or deterministic? That is the question. Org J Biol Sci 4(1):77–79

    Google Scholar 

  46. Gao NP, Gandrillon O, Páldi A, Herbach U, Gunawan R (2023) Single-cell transcriptional uncertainty landscape of cell differentiation. F1000Res 12:426. Available from https://f1000research.com/articles/12-426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mojtahedi M, Skupin A, Zhou J, Castaño IG, Leong-Quong RYY, Chang H et al (2016) Cell fate decision as high-dimensional critical state transition. PLoS Biol 14(12):e2000640

    Article  PubMed  PubMed Central  Google Scholar 

  48. Richard A, Boullu L, Herbach U, Bonnafoux A, Morin V, Vallin E et al (2016) Single-cell-based analysis highlights a surge in cell-to-cell molecular variability preceding irreversible commitment in a differentiation process. PLoS Biol 14(12):e1002585

    Article  PubMed  PubMed Central  Google Scholar 

  49. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP et al (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19(4):271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kupiec JJ (2023) Kupiec the origin of individuals [Internet]. [cited 2023 Jun 10]. Available from https://www.academia.edu/62688694/Kupiec_The_origin_of_individuals

Download references

Acknowledgements

We thank our colleagues for the helpful discussions and the useful comments on the manuscript.

Financial support: EPHE, Stochagene ANR grant n° BSV6 014 02.

This is an updated version of our previous article (https://doi.org/10.1007/978-1-4939-7456-6_3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Paldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Racine, L., Paldi, A. (2024). Understanding Cell Differentiation Through Single-Cell Approaches: Conceptual Challenges of the Systemic Approach. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 2745. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3577-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3577-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3576-6

  • Online ISBN: 978-1-0716-3577-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics