Skip to main content

Manipulation of Embryonic Cleavage Geometry Using Magnetic Tweezers

  • Protocol
  • First Online:
Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2740))

  • 531 Accesses

Abstract

The geometry of reductive divisions that mark the development of early embryos instructs cell fates, sizes, and positions, by mechanisms that remain unclear. In that context, new methods to mechanically manipulate these divisions are starting to emerge in different model systems. These are key to develop future innovative approaches and understand developmental mechanisms controlled by cleavage geometry. In particular, how cell cycle pace is regulated in rapidly reducing blastomeres and how fate diversity can arise from blastomere size and position within embryos are fundamental questions that remain at the heart of ongoing research. In this chapter, we provide a detailed protocol to assemble and use magnetic tweezers in the sea urchin model and generate spatially controlled asymmetric and oriented divisions during early embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sallé J, Minc N (2022) Cell division geometries as central organizers of early embryo development. Semin Cell Dev Biol 130:3–11. https://doi.org/10.1016/j.semcdb.2021.08.004

    Article  CAS  PubMed  Google Scholar 

  2. Pierre A, Sallé J, Wühr M, Minc N (2016) Generic theoretical models to predict division patterns of cleaving embryos. Dev Cell 39:667–682. https://doi.org/10.1016/j.devcel.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolpert L, Tickle C, Arias AM (2015) Principles of development. Oxford University Press, Oxford

    Google Scholar 

  4. Chen H, Einstein LC, Little SC, Good MC (2019) Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev Cell 49:852–866.e7. https://doi.org/10.1016/j.devcel.2019.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jukam D, Kapoor RR, Straight AF, Skotheim JM (2021) The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus. Curr Biol 31:4269–4281.e8. https://doi.org/10.1016/j.cub.2021.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Syed S, Wilky H, Raimundo J et al (2021) The nuclear to cytoplasmic ratio directly regulates zygotic transcription in drosophila through multiple modalities. Proc Natl Acad Sci USA 118:e2010210118. https://doi.org/10.1073/pnas.2010210118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen P, Tomschik M, Nelson KM et al (2019) Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume. J Cell Biol 218:4063–4078. https://doi.org/10.1083/jcb.201902124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jevtić P, Schibler AC, Wesley CC et al (2019) The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep 20:e47283. https://doi.org/10.15252/embr.201847283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jevtić P, Levy DL (2015) Nuclear size scaling during Xenopus early development contributes to midblastula transition timing. Curr Biol 25:45–52. https://doi.org/10.1016/j.cub.2014.10.051

    Article  CAS  PubMed  Google Scholar 

  10. Garzon-Coral C, Fantana HA, Howard J (2016) A force-generating machinery maintains the spindle at the cell center during mitosis. Science 352:1124–1127. https://doi.org/10.1126/science.aad9745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sallé J, Xie J, Ershov D et al (2019) Asymmetric division through a reduction of microtubule centering forces. J Cell Biol 218:771–782. https://doi.org/10.1083/jcb.201807102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee RN, Sallé J, Dmitrieff S et al (2020) The perinuclear ER scales nuclear size independently of cell size in early embryos. Dev Cell 54:395–409.e7. https://doi.org/10.1016/j.devcel.2020.05.003

  13. Jankele R, Jelier R, Gönczy P (2021) Physically asymmetric division of the C. elegans zygote ensures invariably successful embryogenesis. elife 10:10.7554/eLife.61714

    Article  Google Scholar 

  14. Tanimoto H, Sallé J, Dodin L, Minc N (2018) Physical forces determining the persistency and centering precision of microtubule asters. Nat Phys 14:848–854. https://doi.org/10.1038/s41567-018-0154-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ettensohn CA, Wray G, Wessel GM (2004) Development of sea urchins, ascidians, and other invertebrate deuterostomes: experimental approaches. Gulf Professional Publishing

    Google Scholar 

  16. Barone V, Lyons DC (2022) Live imaging of echinoderm embryos to illuminate evo-devo 2022.08.05.503002

    Google Scholar 

  17. von Dassow G, Verbrugghe KJC, Miller AL et al (2009) Action at a distance during cytokinesis. J Cell Biol 187:831–845. https://doi.org/10.1083/jcb.200907090

    Article  CAS  Google Scholar 

  18. Hamaguchi MS, Hamaguchi Y, Hiramoto Y (1986) Microinjected polystyrene beads move along astral rays in sand dollar eggs. Develop Growth Differ 28:461–470. https://doi.org/10.1111/j.1440-169X.1986.00461.x

    Article  Google Scholar 

  19. Xie J, Najafi J, Le Borgne R et al (2022) Contribution of cytoplasm viscoelastic properties to mitotic spindle positioning. Proc Natl Acad Sci 119:e2115593119. https://doi.org/10.1073/pnas.2115593119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hiramoto Y (1969) Mechanical properties of the protoplasm of the sea urchin egg. II Fertilized egg. Exp Cell Res 56:209–218. https://doi.org/10.1016/0014-4827(69)90004-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique (CNRS), the Appel Emergence en recherche (“MAGNUC”) from Université de Paris to JS, and grants from La Ligue Contre le Cancer (EL2021. LNCC/ NiM), the Fondation Bettencourt Schueller (“Coup d’Elan”), and the European Research Council (ERC CoG “Forcaster” no. 647073) to NM. JX. acknowledges the “Ecole Doctorale FIRE (Frontières de l’Innovation en Recherche et Education) – Program Bettencourt,” a fellowship from the Chinese Scholarship Council (201708070046), and from the LabEx “Who am I?” (ANR-11-LABX-0071). DLL is supported by the National Institutes of Health/National Institute of General Medical Sciences (R35GM134885 and P20GM103432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Sallé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xie, J., Levy, D.L., Minc, N., Sallé, J. (2024). Manipulation of Embryonic Cleavage Geometry Using Magnetic Tweezers. In: Castro, A., Lacroix, B. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 2740. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3557-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3557-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3556-8

  • Online ISBN: 978-1-0716-3557-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics