Skip to main content

Measuring Mitotic Spindle and Microtubule Dynamics in Marine Embryos and Non-model Organisms

  • Protocol
  • First Online:
Cell Cycle Control

Abstract

During eukaryotic cell division a microtubule-based structure, the mitotic spindle, aligns and segregates chromosomes between daughter cells. Understanding how this cellular structure is assembled and coordinated in space and in time requires measuring microtubule dynamics and visualizing spindle assembly with high temporal and spatial resolution. Visualization is often achieved by the introduction and the detection of molecular probes and fluorescence microscopy. Microtubules and mitotic spindles are highly conserved across eukaryotes; however, several technical limitations have restricted these investigations to only a few species. The ability to monitor microtubule and chromosome choreography in a wide range of species is fundamental to reveal conserved mechanisms or unravel unconventional strategies that certain forms of life have developed to ensure faithful partitioning of chromosomes during cell division. Here, we describe a technique based on injection of purified proteins that enables the visualization of microtubules and chromosomes with a high contrast in several divergent marine embryos. We also provide analysis methods and tools to extract microtubule dynamics and monitor spindle assembly. These techniques can be adapted to a wide variety of species in order to measure microtubule dynamics and spindle assembly kinetics when genetic tools are not available or in parallel to the development of such techniques in non-model organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  2. Walker RA, O’Brien ET, Pryer NK et al (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448

    Article  CAS  PubMed  Google Scholar 

  3. Shelden E, Wadsworth P (1993) Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J Cell Biol 120:935–945

    Article  CAS  PubMed  Google Scholar 

  4. Zwetsloot AJ, Tut G, Straube A (2018) Measuring microtubule dynamics. Essays Biochem 62:725–735. https://doi.org/10.1042/EBC20180035

    Article  PubMed  PubMed Central  Google Scholar 

  5. Verde F, Dogterom M, Stelzer E et al (1992) Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J Cell Biol 118:1097–1108

    Article  CAS  PubMed  Google Scholar 

  6. Minden JS, Agard DA, Sedat JW, Alberts BM (1989) Direct cell lineage analysis in Drosophila melanogaster by time-lapse, three-dimensional optical microscopy of living embryos. J Cell Biol 109:505–516. https://doi.org/10.1083/jcb.109.2.505

    Article  CAS  PubMed  Google Scholar 

  7. Kellogg DR, Mitchison TJ, Alberts BM (1988) Behaviour of microtubules and actin filaments in living Drosophila embryos. Development 103:675–686. https://doi.org/10.1242/dev.103.4.675

    Article  CAS  PubMed  Google Scholar 

  8. Wadsworth P, Sloboda RD (1983) Microinjection of fluorescent tubulin into dividing sea urchin cells. J Cell Biol 97:1249–1254. https://doi.org/10.1083/jcb.97.4.1249

    Article  CAS  PubMed  Google Scholar 

  9. Hamaguchi Y, Toriyama M, Sakai H, Hiramoto Y (1985) Distribution of fluorescently labeled tubulin injected into sand dollar eggs from fertilization through cleavage. J Cell Biol 100:1262–1272. https://doi.org/10.1083/jcb.100.4.1262

    Article  CAS  PubMed  Google Scholar 

  10. Salmon ED, Leslie RJ, Saxton WM et al (1984) Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol 99:2165–2174. https://doi.org/10.1083/jcb.99.6.2165

    Article  CAS  PubMed  Google Scholar 

  11. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88. https://doi.org/10.1016/S1046-5928(03)00218-3

    Article  CAS  PubMed  Google Scholar 

  12. Hyman AA (1991) Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J Cell Sci Suppl 14:125–127

    Article  CAS  PubMed  Google Scholar 

  13. Prodon F, Chenevert J, Hébras C et al (2010) Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 137:2011–2021. https://doi.org/10.1242/dev.047845

    Article  CAS  PubMed  Google Scholar 

  14. Lacroix B, Letort G, Pitayu L et al (2018) Microtubule dynamics scale with cell size to set spindle length and assembly timing. Dev Cell 45:496–511 e6. https://doi.org/10.1016/j.devcel.2018.04.022

  15. Yasuo H, McDougall A (2018) Practical guide for ascidian microinjection: phallusia mammillata. Adv Exp Med Biol 1029:15–24. https://doi.org/10.1007/978-981-10-7545-2_3

    Article  CAS  PubMed  Google Scholar 

  16. Lacroix B, Bourdages KG, Dorn JF et al (2014) In situ imaging in C. elegans reveals developmental regulation of microtubule dynamics. Dev Cell 29:203–216. https://doi.org/10.1016/j.devcel.2014.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lacroix B, Maddox AS (2014) Microtubule dynamics followed through cell differentiation and tissue biogenesis in C. elegans. Worm 3:e967611. https://doi.org/10.4161/21624046.2014.967611

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jaffe LA, Terasaki M (2004) Quantitative microinjection of oocytes, eggs, and embryos. Methods Cell Biol 74:219–242

    Article  PubMed  PubMed Central  Google Scholar 

  19. Belmont LD, Hyman AA, Sawin KE, Mitchison TJ (1990) Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62:579–589

    Article  CAS  PubMed  Google Scholar 

  20. Verde F, Labbe JC, Doree M, Karsenti E (1990) Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 343:233–238. https://doi.org/10.1038/343233a0

    Article  CAS  PubMed  Google Scholar 

  21. Mitchison TJ, Ishihara K, Nguyen P, Wuhr M (2015) Size scaling of microtubule assemblies in early xenopus embryos. Cold Spring Harb Perspect Biol 7:a019182. https://doi.org/10.1101/cshperspect.a019182

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rieckhoff EM, Berndt F, Elsner M et al (2020) Spindle scaling is governed by cell boundary regulation of microtubule nucleation. Curr Biol 30:4973–4983.e10. https://doi.org/10.1016/j.cub.2020.10.093

  23. Srayko M, Kaya A, Stamford J, Hyman AA (2005) Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev Cell 9:223–236. https://doi.org/10.1016/j.devcel.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  24. Li G, Moore JK (2020) Microtubule dynamics at low temperature: evidence that tubulin recycling limits assembly. Mol Biol Cell 31:1154–1166. https://doi.org/10.1091/mbc.E19-11-0634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all members of Alex McDougall’s and Remi Dumollard’s lab and Stefania Castagnetti’s lab at LBDV, IMEV in Villefranche-sur-mer, France, Julien Dumont’s lab in Institut Jacques Monod in Paris and Anna Castro’s and Thierry Lorca’s lab at CRBM in Montpellier, France. We are grateful to the Clytia team especially Evelyn Houliston and Tsuyoshi Momose at IMEV for their assistance and for providing Clytia hemisphaerica gametes. We thank Carsten Janke’s lab (Institut Curie, Orsay, France) for providing help with tubulin purification and Lydia Besnardeau (LBDV, IMEV) for cloning the pET11-mouseH2B-RFP-6His plasmid. We are also grateful to Christian Sardet for fruitful discussions and his inspiring comments. This work benefited from access to the Institut de la Mer de Villefranche including the Imaging Platform PIM (member of MICA microscopy platform), an EMBRC-France and EMBRC-ERIC Site. Financial support was provided by ANR-10-INBS-02. The project was initiated thanks to EMBRC FR – AAP2019 – n° 3238 (B. Lacroix). The work was funded by ANR MTDiSco ANR-20-CE13-0033 (B. Lacroix) and the European Research Council ERC-CoG ChromoSOMe 819179 (J. Dumont).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Lacroix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chenevert, J. et al. (2024). Measuring Mitotic Spindle and Microtubule Dynamics in Marine Embryos and Non-model Organisms. In: Castro, A., Lacroix, B. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 2740. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3557-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3557-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3556-8

  • Online ISBN: 978-1-0716-3557-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics