Skip to main content

Detection of Natural Wolbachia Strains in Anopheles Mosquitoes

  • Protocol
  • First Online:
Wolbachia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2739))

Abstract

Wolbachia is an endosymbiotic bacterium that naturally infects many insect species, including mosquitoes that transmit human diseases. Wolbachia strains have been shown to inhibit the transmission of both arboviruses and malaria Plasmodium parasites. The existence of natural strains in wild Anopheles (An.) mosquitoes, the vectors of malaria parasites, in an endosymbiotic relationship is still to be fully determined. Although Wolbachia has been reported to be present in wild populations of the An. gambiae complex, the primary vectors of malaria in Sub-Saharan Africa, Wolbachia DNA sequence density and infection frequencies are low. As most studies have used highly sensitive nested PCR as the only detection method, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Techniques such as fluorescent in situ hybridization, microbiome sequencing, and Wolbachia whole genome sequencing have provided concrete evidence for genuine Wolbachia strains in two mosquito species: An. moucheti and An. demeilloni. In this chapter, the current methodology used to determine if resident strains exist in Anopheles mosquitoes will be reviewed, including both PCR- and non-PCR-based protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7(6):e38544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Glaser RL, Meola MA (2010) The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One 5(8):e11977

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mousson L, Zouache K, Arias-Goeta C et al (2012) The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis 6(12):e1989

    Article  PubMed  PubMed Central  Google Scholar 

  4. Silva JBL, Magalhaes Alves D, Bottino-Rojas V et al (2017) Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae). PLoS One 12(7):e0181678

    Google Scholar 

  5. Walker T, Johnson PH, Moreira LA et al (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476(7361):450–U101

    Article  CAS  PubMed  Google Scholar 

  6. Iturbe-Ormaetxe I, Walker T, Neill SLO (2011) Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 12(6):508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joubert DA, Walker T, Carrington LB et al (2016) Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management. PLoS Pathog 12(2):e1005434

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139(7):1268–1278

    Google Scholar 

  9. Bian G, Xu Y, Lu P et al (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6(4):e1000833

    Article  PubMed  PubMed Central  Google Scholar 

  10. Blagrove MS, Arias-Goeta C, Failloux AB et al (2012) Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci U S A 109(1):255–260

    Article  CAS  PubMed  Google Scholar 

  11. Ant TH, Herd CS, Geoghegan V et al (2018) The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog 14(1):e1006815

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I et al (2017) Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog 13(12):e1006751

    Article  PubMed  PubMed Central  Google Scholar 

  13. McMeniman CJ, Lane RV, Cass BN et al (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323(5910):141–144

    Article  CAS  PubMed  Google Scholar 

  14. Utarini A, Indriani C, Ahmad RA et al (2021) Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med 384(23):2177–2186

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baldini F, Segata N, Pompon J et al (2014) Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun 5(3985

    Google Scholar 

  16. Jeffries CL, Lawrence GG, Golovko G et al (2018) Novel Wolbachia strains in Anopheles malaria vectors from sub-Saharan Africa. Wellcome Open Res 3(113)

    Google Scholar 

  17. Niang EHA, Bassene H, Makoundou P et al (2018) First report of natural Wolbachia infection in wild Anopheles funestus population in Senegal. Malar J 17(1):408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gomes FM, Hixson BL, Tyner MDW et al (2017) Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission. Proc Natl Acad Sci U S A 114(47):12566–12571

    Google Scholar 

  19. Shaw WR, Marcenac P, Childs LM et al (2016) Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun 7(11772

    Google Scholar 

  20. Baldini F, Rouge J, Kreppel K et al (2018) First report of natural Wolbachia infection in the malaria mosquito Anopheles arabiensis in Tanzania. Parasit Vectors 11(1):635

    Google Scholar 

  21. Chrostek E, Gerth M (2019) Is Anopheles gambiae a Natural Host of Wolbachia? mBio 10(3)

    Google Scholar 

  22. Walker T, Quek S, Jeffries CL et al (2021) Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes. Curr Biol 31(11):2310–20 e5

    Google Scholar 

  23. Carini P, Marsden PJ, Leff JW et al (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2(16242

    Google Scholar 

  24. Ross PA, Callahan AG, Yang Q et al (2020) An elusive endosymbiont: does Wolbachia occur naturally in Aedes aegypti? Ecol Evol 10(3):1581–1591

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jolley KA, Chan MS, Maiden MC (2004) mlstdbNet - distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5(86

    Google Scholar 

  27. Baldo L, Dunning Hotopp JC, Jolley KA et al (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72(11):7098–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klindworth A, Pruesse E, Schweer T et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1

    Article  CAS  PubMed  Google Scholar 

  29. Collins FH, Paskewitz SM (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol 5(1):1–9

    Google Scholar 

  30. St Laurent B, Cooke M, Krishnankutty SM et al (2016) Molecular characterization reveals diverse and unknown malaria vectors in the Western Kenyan highlands. Am J Trop Med Hyg 94(2):327–335

    Article  PubMed  PubMed Central  Google Scholar 

  31. Erlank E, Koekemoer LL, Coetzee M (2018) The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar J 17(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  32. Beebe NW, Saul A (1995) Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction--restriction fragment length polymorphism analysis. Am J Trop Med Hyg 53(5):478–481

    Google Scholar 

  33. Ndo C, Antonio-Nkondjio C, Cohuet A et al (2010) Population genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa. Malar J 9(161)

    Google Scholar 

  34. Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299

    CAS  PubMed  Google Scholar 

  35. de Oliveira CD, Goncalves DS, Baton LA et al (2015) Broader prevalence of Wolbachia in insects including potential human disease vectors. Bull Entomol Res 105(3):305–315

    Article  PubMed  Google Scholar 

  36. Baldo L, Dunning Hotopp J, Jolley K et al (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72(11):7098–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jeffries CL, Cansado-Utrilla C, Beavogui AH et al (2021) Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea. R Soc Open Sci 8(4):202032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quek S, Cerdeira L, Jeffries CL et al (2022) Wolbachia endosymbionts in two Anopheles species indicates independent acquisitions and lack of prophage elements. Microb Genom 8(4)

    Google Scholar 

  39. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by a Sir Henry Dale Wellcome Trust/Royal Society fellowship (101285): https://wellcome.org and https://royalsociety.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Walker, T. (2024). Detection of Natural Wolbachia Strains in Anopheles Mosquitoes. In: Fallon, A.M. (eds) Wolbachia. Methods in Molecular Biology, vol 2739. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3553-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3553-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3552-0

  • Online ISBN: 978-1-0716-3553-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics