Skip to main content

Enrichment, Sequencing, and Identification of DNA Bacteriophages from Fecal Samples

  • Protocol
  • First Online:
Viral Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2732))

Abstract

Research on individual viruses and phages, as well as viral populations (viromes), is greatly expanding. Phages and viromes are increasingly suspected to have numerous impacts on the ecosystem in which they reside by interacting directly or indirectly with the other organisms present in their environment. In particular, phage communities of the gut microbiota have been associated with a wide range of diseases. However, properly investigating intestinal viromes is still very challenging, both experimentally and analytically. This chapter proposes a simple and reproducible protocol to separate and enrich DNA phage particles from fecal samples, to sequence them, and finally obtain a basic but robust bioinformatic characterization and classification of the global bacteriophage community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Billaud M, Lamy-Besnier Q, Lossouarn J et al (2021) Analysis of viromes and microbiomes from pig fecal samples reveals that phages and prophages rarely carry antibiotic resistance genes. ISME Commun 1:1–10

    Article  Google Scholar 

  2. Bouras G, Nepal R, Houtak G et al (2022) Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics 39:btac776

    Article  PubMed Central  Google Scholar 

  3. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G et al (2021) Massive expansion of human gut bacteriophage diversity. Cell 184:1098–1109.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  5. Garneau JR, Depardieu F, Fortier L-C et al (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7:8292

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garneau JR, Legrand V, Marbouty M et al (2021) High-throughput identification of viral termini and packaging mechanisms in virome datasets using PhageTermVirome. Sci Rep 11:18319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Glassner KL, Abraham BP, Quigley EMM (2020) The microbiome and inflammatory bowel disease. J Allergy Clin Immunol 145:16–27

    Article  CAS  PubMed  Google Scholar 

  8. Gregory AC, Zablocki O, Zayed AA et al (2020) The gut Virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28:724–740.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo J, Bolduc B, Zayed AA et al (2021) VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9:37

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han J-L, Lin H-L (2014) Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World J Gastroenterol 20:17737–17745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jain T, Sharma P, Are AC et al (2021) New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front Immunol 12:622064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan Mirzaei M, Khan MAA, Ghosh P et al (2020) Bacteriophages isolated from stunted children can regulate gut bacterial communities in an age-specific manner. Cell Host Microbe 27:199–212.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamy-Besnier Q, Bignaud A, Garneau JR, et al (2023) Chromosome folding and prophage activation reveal specific genomic architecture for intestinal bacteria. Microbiome 11:111

    Google Scholar 

  14. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  16. Lim ES, Zhou Y, Zhao G et al (2015) Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med 21:1228–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu B-N, Liu X-T, Liang Z-H, Wang J-H (2021) Gut microbiota in obesity. World J Gastroenterol 27:3837–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morais LH, Schreiber HL, Mazmanian SK (2021) The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 19:241–255

    Article  CAS  PubMed  Google Scholar 

  19. Nakatsu G, Zhou H, Wu WKK et al (2018) Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155:529–541.e5

    Article  PubMed  Google Scholar 

  20. Nayfach S, Páez-Espino D, Call L et al (2021) Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol 6:960–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishimura Y, Yoshida T, Kuronishi M et al (2017) ViPTree: the viral proteomic tree server. Bioinformatics 33:2379–2380

    Article  CAS  PubMed  Google Scholar 

  22. Norman JM, Handley SA, Baldridge MT et al (2015) Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patterson E, Ryan PM, Cryan JF et al (2016) Gut microbiota, obesity and diabetes. Postgrad Med J 92:286–300

    Article  CAS  PubMed  Google Scholar 

  25. Nayfach S, Camargo AP, Schulz F et al (2021) CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 39(5):578–585

    Article  CAS  PubMed  Google Scholar 

  26. Schaubeck M, Clavel T, Calasan J et al (2016) Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65:225–237

    Article  CAS  PubMed  Google Scholar 

  27. Sepich-Poore GD, Zitvogel L, Straussman R et al (2021) The microbiome and human cancer. Science 371:eabc4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shah SA, Deng L, Thorsen J, et al (2021) Hundreds of viral families in the healthy infant gut bioRxiv 2021.07.02.450849

    Google Scholar 

  29. Shkoporov AN, Ryan FJ, Draper LA et al (2018) Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome 6:68

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tisza MJ, Buck CB (2021) A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proc Natl Acad Sci U S A 118:e2023202118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Marie-Agnès Petit, Thania Sbaghdi, and Youzheng Teo for critical reading and review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian R. Garneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lamy-Besnier, Q., Garneau, J.R. (2024). Enrichment, Sequencing, and Identification of DNA Bacteriophages from Fecal Samples. In: Pantaleo, V., Miozzi, L. (eds) Viral Metagenomics. Methods in Molecular Biology, vol 2732. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3515-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3515-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3514-8

  • Online ISBN: 978-1-0716-3515-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics