Skip to main content

Optimized Recovery of Viral DNA and RNA from Blood Plasma for Viral Metagenomics

  • Protocol
  • First Online:
Viral Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2732))

Abstract

Metagenomics is vastly improving our ability to discover new viruses, as well as their possible associations with disease. However, metagenomics has also changed our understanding of viruses in general. This is because we can find viruses in healthy hosts in the absence of disease, which changes the perspective of viruses as mere pathogens and offers a new perspective in which viruses function as important components of ecosystems. In concrete, human blood metagenomics has revealed the presence of different types of viruses in apparently healthy subjects. These viruses are human anelloviruses and, to a lower extent, human pegiviruses. Viral metagenomics’ major challenge is the correct isolation of the viral nucleic acids from a specific sample. For the protocol to be successful, all steps must be carefully chosen, in particular those that optimize the recovery of viral nucleic acids. Here, we present a procedure that allows the recovery of both DNA and RNA viruses from plasma samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holmes EC (2011) What does virus evolution tell us about virus origins? J Virol 85(11):5247–5251. https://doi.org/10.1128/2FJVI.02203-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. French RK, Holmes EC (2020) An ecosystems perspective on virus evolution and emergence. Trends Microbiol 28(3):165–175. https://doi.org/10.1016/j.tim.2019.10.010

    Article  CAS  PubMed  Google Scholar 

  3. Khan Mirzaei M, Xue J, Costa R et al (2021) Challenges of studying the human Virome – relevant emerging technologies. Trends Microbiol 29(2):171–181. https://doi.org/10.1016/j.tim.2020.05.021

    Article  CAS  PubMed  Google Scholar 

  4. Lipkin WI, Firth C (2013) Viral surveillance and discovery. Curr Opin Virol 3(2):199–204. https://doi.org/10.1016/j.coviro.2013.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosario K, Breitbart M (2011) Exploring the viral world through metagenomics. Curr Opin Virol 1(4):289–297. https://doi.org/10.1016/j.coviro.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  6. Sathiamoorthy S, Malott RJ, Gisonni-Lex L, Ng SHS (2018) Selection and evaluation of an efficient method for the recovery of viral nucleic acids from complex biologicals. NPJ Vaccines 3(1):31. https://doi.org/10.1038/s41541-018-0067-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porter AF, Cobbin J, Li CX et al (2011) Metagenomic identification of viral sequences in laboratory reagents. Viruses 13(11):1–13. https://doi.org/10.3390/v13112122

    Article  CAS  Google Scholar 

  8. Asplund M, Kjartansdóttir KR, Mollerup S et al (2019) Contaminating viral sequences in high-throughput sequencing viromics: a linkage study of 700 sequencing libraries. Clin Microbiol Infect 25(10):1277–1285. https://doi.org/10.1016/j.cmi.2019.04.028

    Article  CAS  PubMed  Google Scholar 

  9. Santiago-Rodriguez TM, Hollister EB (2020) Potential applications of human viral metagenomics and reference materials: considerations for current and future viruses. Appl Environ Microbiol 86(22):1–12. https://doi.org/10.1128/AEM.01794-20

    Article  Google Scholar 

  10. Rascovan N, Duraisamy R, Desnues C (2016) Metagenomics and the human Virome in asymptomatic individuals. Annu Rev Microbiol 70:125–141. https://doi.org/10.1146/annurev-micro-102215-095431

    Article  CAS  PubMed  Google Scholar 

  11. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  12. Liang G, Bushman FD (2021) The human virome: assembly, composition and host interactions. Nat Rev Microbiol 19(8):514–527. https://doi.org/10.1038/s41579-021-00536-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zárate S, Taboada B, Yocupicio-Monroy M, Arias CF (2017) Human Virome. Arch Med Res 48(8):701–716. https://doi.org/10.1016/j.arcmed.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  14. Briese T, Kapoor A, Mishra N et al (2015) Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. MBio 6(5). https://doi.org/10.1128/mBio.01491-15

  15. Furuta RA, Sakamoto H, Kuroishi A et al (2015) Metagenomic profiling of the viromes of plasma collected from blood donors with elevated serum alanine aminotransferase levels. Transfusion 55(8):1889–1899. https://doi.org/10.1111/trf.13057

    Article  CAS  PubMed  Google Scholar 

  16. Law J, Jovel J, Patterson J et al (2013) Identification of Hepatotropic viruses from plasma using deep sequencing: a next generation diagnostic tool. PLoS One 8(4):e60595. https://doi.org/10.1371/journal.pone.0060595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Popgeorgiev N, Boyer M, Fancello L et al (2013) Marseillevirus-like virus recovered from blood donated by asymptomatic humans. J Infect Dis 208(7):1042–1050. https://doi.org/10.1093/infdis/jit292

    Article  CAS  PubMed  Google Scholar 

  18. Stremlau MH, Andersen KG, Folarin OA et al (2015) Discovery of novel Rhabdoviruses in the blood of healthy individuals from West Africa. PLoS Negl Trop Dis 9(3):e0003631. https://doi.org/10.1371/journal.pntd.0003631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bushnell B, Rood J, Singer E (2017) BBMerge – accurate paired shotgun read merging via overlap. PLoS One 12(10):e0185056. https://doi.org/10.1371/journal.pone.0185056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim D, Song L, Breitwieser FP, Salzberg SL (2016) Centrifuge: rapid and accurate classificaton of metagenomic sequences. Genome Res 26(12):054965. https://doi.org/10.1101/gr.210641.116

    Article  CAS  Google Scholar 

  22. Martí JM (2019) Recentrifuge: robust comparative analysis and contamination removal for metagenomics. PLoS Comput Biol 15(4):e1006967. https://doi.org/10.1371/journal.pcbi.1006967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) MetaSPAdes: a new versatile metagenomic assembler. Genome Res 27(5):824–834. https://doi.org/10.1101/gr.213959.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO) cofinanced by FEDER funds, grant numbers SAF2017-82287-R and PID2020-118602RB-I00, and the Generalitat Valenciana, grant number AICO/2021/085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Cuevas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cebriá-Mendoza, M., Díaz, W., Sanjuán, R., Cuevas, J.M. (2024). Optimized Recovery of Viral DNA and RNA from Blood Plasma for Viral Metagenomics. In: Pantaleo, V., Miozzi, L. (eds) Viral Metagenomics. Methods in Molecular Biology, vol 2732. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3515-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3515-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3514-8

  • Online ISBN: 978-1-0716-3515-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics