Skip to main content

Evaluation of Ice Recrystallization Inhibition of Ice-Binding Proteins by Monitoring Specific Ice Crystals

  • Protocol
  • First Online:
Ice Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2730))

Abstract

Ice recrystallization is a phenomenon in which large ice crystals are formed at the expense of smaller ones. The resultant large ice crystals degrade the quality of frozen foods and cryopreserved biomaterials. To minimize freeze damage by controlling the ice recrystallization process, various compounds have been developed, including biological antifreezes, synthetic peptides, glycopeptides, polymers, and small molecules. To compare their efficiency, evaluation methods of ice recrystallization inhibition are important. This chapter describes a practical protocol to quantify the inhibition efficiency by observing specific ice crystals exhibiting uniform growth.

Author contributions: A.R., Y.O., and S.T. designed research. A.R., H.K., Y.O., and S.T. performed research. A.R., S.T., and H.K. wrote the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Capicciotti CJ, Doshi M, Ben RN (2013) Ice recrystallization inhibitors: from biological antifreezes to small molecules. In: Recent developments in the study of recrystallization. INTECH Open, Ltd., London

    Google Scholar 

  2. Knight CA, Hallett J, DeVries AL (1988) Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55–60

    Article  CAS  PubMed  Google Scholar 

  3. Smallwood M, Worrall D, Byass L, Elias L, Ashford D, Doucet CJ, Holt C, Telford J, Lillford P, Bowles DJ (1999) Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tomczak MM, Marshall CB, Gilbert JA, Davies PL (2003) A facile method for determining ice recrystallization inhibition by antifreeze proteins. Biochem Biophys Res Commun 311:1041–1046

    Article  CAS  PubMed  Google Scholar 

  5. Knight CA, Wen D, Laursen RA (1994) Nonequilibrium Antifreeze Peptides and the Recrystallization of Ice. Cryobiology 32:23–34

    Article  Google Scholar 

  6. Eniade A, Purushotham M, Ben RN, Wang JB, Horwath K (2003) A serendipitous discovery of antifreeze protein-specific activity in C-linked antifreeze glycoprotein analogs. Cell Biochem Biophys 38:115–124

    Article  CAS  PubMed  Google Scholar 

  7. Jackman J, Noestheden M, Moffat D, Pezacki JP, Findlay S, Ben RN (2007) Assessing antifreeze activity of AFGP8 using domain recognition software. Biochem Biophys Res Commun 354:340–344

    Article  CAS  PubMed  Google Scholar 

  8. Budke C, Heggemann C, Koch M, Sewald N, Koop T (2009) Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory. J Phys Chem B 113:2865–2873

    Article  CAS  PubMed  Google Scholar 

  9. Olijve LLC, Vrielink ASO, Voets IK (2016) A simple and quantitative method to evaluate ice recrystallization kinetics using the circle Hough transform algorithm. Cryst Growth Des 16:4190–4195

    Article  CAS  Google Scholar 

  10. Hartel RW (1998) The properties of water in foods. Blackie Academic and Professional, London

    Google Scholar 

  11. Hartel RW (2001) Crystallization in foods. Aspen Publisher, Gaithersburg

    Google Scholar 

  12. Rahman AT, Arai T, Yamauchi A, Miura A, Kondo H, Ohyama Y, Tsuda S (2019) Ice recrystallization is strongly inhibited when antifreeze proteins bind to multiple ice planes. Sci Rep 9:2212

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahatabuddin S, Hanada Y, Nishimiya Y, Kondo H, Tsuda S (2017) Concentration-dependent oligomerization of an alpha-helical antifreeze polypeptide makes it hyperactive. Sci Rep 7:42501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S (2008) Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from Longsnout poacher, Brachyopsis rostratus. J Mol Biol 382:734–746

    Article  CAS  PubMed  Google Scholar 

  15. Nishimiya Y, Sato R, Takamichi M, Miura A, Tsuda S (2005) Co-operative effect of the isoforms of type III antifreeze protein expressed in Notched-fin eelpout, Zoarces elongatus Kner. FEBS J 272:482–492

    Article  CAS  PubMed  Google Scholar 

  16. Mahatabuddin S, Fukami D, Arai T, Nishimiya Y, Shimiyu R, Shibayaki C, Kondo H, Adachi M, Tsuda S (2018) Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein. Proc Natl Acad Sci USA 115:5456–5461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng J, Hanada Y, Miura A, Tsuda S, Kondo H (2016) Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Biochem J 473:4011–4026

    Article  CAS  PubMed  Google Scholar 

  18. Takamichi M, Nishimiya Y, Miura A, Tsuda S (2007) Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. FEBS J 274:6469–6476

    Article  CAS  PubMed  Google Scholar 

  19. Rasband WS (1997–2018) ImageJ. U.S. National Institutes of Health, Bethesda. https://imagej.nih.gov/ij/

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers 19H02529 and 19K22989 (for S.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemasa Kondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rahman, A.T., Ohyama, Y., Tsuda, S., Kondo, H. (2024). Evaluation of Ice Recrystallization Inhibition of Ice-Binding Proteins by Monitoring Specific Ice Crystals. In: Drori, R., Stevens, C. (eds) Ice Binding Proteins. Methods in Molecular Biology, vol 2730. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3503-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3503-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3502-5

  • Online ISBN: 978-1-0716-3503-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics