Skip to main content

Methods for the Production of Radiolabeled Bioagents for ImmunoPET

  • Protocol
  • First Online:
Positron Emission Tomography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2729))

  • 769 Accesses

Abstract

Immunoglobulin-based positron emission tomography (ImmunoPET) is making increasingly significant contributions to the nuclear imaging toolbox. The exquisite specificity of antibodies combined with the high-resolution imaging of PET enables clinicians and researchers to localize diseases, especially cancer, with a high degree of spatial certainty. This review focuses on the radiopharmaceutical preparation necessary to obtain those images—the work behind the scenes, which occurs even before the patient or animal is injected with the radioimmunoconjugate. The focus of this methods review will be the chelation of four radioisotopes to their most common and clinically relevant chelators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2 Suppl 2):S41–S52. https://doi.org/10.1016/j.jaci.2009.09.046

    Article  Google Scholar 

  2. Ljungars A, Martensson L, Mattsson J, Kovacek M, Sundberg A, Tornberg UC, Jansson B, Persson N, Emruli VK, Ek S, Jerkeman M, Hansson M, Juliusson G, Ohlin M, Frendeus B, Teige I, Mattsson M (2018) A platform for phenotypic discovery of therapeutic antibodies and targets applied on Chronic Lymphocytic Leukemia. NPJ Precis Oncol 2:18. https://doi.org/10.1038/s41698-018-0061-2

    Article  CAS  Google Scholar 

  3. Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, Williams LE, Chatziioannou AF, Gambhir SS, Wu AM (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44(12):1962–1969

    CAS  Google Scholar 

  4. Lepin EJ, Leyton JV, Zhou Y, Olafsen T, Salazar FB, McCabe KE, Hahm S, Marks JD, Reiter RE, Wu AM (2010) An affinity matured minibody for PET imaging of prostate stem cell antigen (PSCA)-expressing tumors. Eur J Nucl Med Mol Imaging 37(8):1529–1538. https://doi.org/10.1007/s00259-010-1433-1

    Article  CAS  Google Scholar 

  5. Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, O’Donoghue JA, Ziolkowska M, Ruan S, Lyashchenko SK, Tsai F, Farwell M, Mitchell TC, Korn R, Le W, Lewis JS, Weber WA, Behera D, Wilson I, Gordon M, Wu AM, Wolchok JD (2020) First-in-humans imaging with (89)Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med 61(4):512–519. https://doi.org/10.2967/jnumed.119.229781

    Article  CAS  Google Scholar 

  6. Farwell M, Gamache R, Pandit-Taskar N, Postow M, Gordon M, Wilson I, Mascioni A, Wu A, Le W, Weiss A, Korn R (2020) 294 CD8 PET imaging of tumor infiltrating T cells in advanced solid tumors: a phase I first-in-human study of 89Zr-IAB22M2C, a radiolabeled anti-CD8 minibody. J Immunother Cancer 8(Suppl 3):A179–A180. https://doi.org/10.1136/jitc-2020-SITC2020.0294

    Article  Google Scholar 

  7. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W (2020) ImmunoPET: concept, design, and applications. Chem Rev 120(8):3787–3851. https://doi.org/10.1021/acs.chemrev.9b00738

    Article  CAS  Google Scholar 

  8. Holland JP, Sheh Y, Lewis JS (2009) Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 36(7):729–739. https://doi.org/10.1016/j.nucmedbio.2009.05.007

    Article  CAS  Google Scholar 

  9. Anderson CJ, Ferdani R (2009) Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm 24(4):379–393. https://doi.org/10.1089/cbr.2009.0674

    Article  CAS  Google Scholar 

  10. Sadeghi M, Aboudzadeh M, Zali A, Zeinali B (2009) (86)Y production via (86)Sr(p,n) for PET imaging at a cyclotron. Appl Radiat Isot 67(7–8):1392–1396. https://doi.org/10.1016/j.apradiso.2009.02.038

    Article  CAS  Google Scholar 

  11. Halime Z, Frindel M, Camus N, Orain PY, Lacombe M, Bernardeau K, Cherel M, Gestin JF, Faivre-Chauvet A, Tripier R (2015) New synthesis of phenyl-isothiocyanate C-functionalised cyclams. Bioconjugation and (64)Cu phenotypic PET imaging studies of multiple myeloma with the te2a derivative. Org Biomol Chem 13(46):11302–11314. https://doi.org/10.1039/c5ob01618e

    Article  CAS  Google Scholar 

  12. Ferdani R, Stigers DJ, Fiamengo AL, Wei L, Li BT, Golen JA, Rheingold AL, Weisman GR, Wong EH, Anderson CJ (2012) Synthesis, Cu(II) complexation, 64Cu-labeling and biological evaluation of cross-bridged cyclam chelators with phosphonate pendant arms. Dalton Trans 41(7):1938–1950. https://doi.org/10.1039/c1dt11743b

    Article  CAS  Google Scholar 

  13. Zeglis BM, Lewis JS (2015) The bioconjugation and radiosynthesis of 89Zr-DFO-labeled antibodies. J Vis Exp 96. https://doi.org/10.3791/52521

  14. Sharma SK, Sevak KK, Monette S, Carlin SD, Knight JC, Wuest FR, Sala E, Zeglis BM, Lewis JS (2016) Preclinical 89Zr Immuno-PET of high-grade serous ovarian cancer and lymph node metastasis. J Nucl Med 57(5):771–776. https://doi.org/10.2967/jnumed.115.167072

    Article  CAS  Google Scholar 

  15. Kristensen LK, Christensen C, Jensen MM, Agnew BJ, Schjoth-Frydendahl C, Kjaer A, Nielsen CH (2019) Site-specifically labeled (89)Zr-DFO-trastuzumab improves immuno-reactivity and tumor uptake for immuno-PET in a subcutaneous HER2-positive xenograft mouse model. Theranostics 9(15):4409–4420. https://doi.org/10.7150/thno.32883

    Article  CAS  Google Scholar 

  16. Vugts DJ, Klaver C, Sewing C, Poot AJ, Adamzek K, Huegli S, Mari C, Visser GWM, Valverde IE, Gasser G, Mindt TL, van Dongen G (2017) Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for (89)Zr-immuno-PET. Eur J Nucl Med Mol Imaging 44(2):286–295. https://doi.org/10.1007/s00259-016-3499-x

    Article  CAS  Google Scholar 

  17. Natarajan A, Patel CB, Habte F, Gambhir SS (2018) Dosimetry prediction for clinical translation of (64)Cu-pembrolizumab ImmunoPET targeting human PD-1 expression. Sci Rep 8(1):633. https://doi.org/10.1038/s41598-017-19123-x

    Article  CAS  Google Scholar 

  18. Natarajan A, Mayer AT, Reeves RE, Nagamine CM, Gambhir SS (2017) Development of novel ImmunoPET tracers to image human PD-1 checkpoint expression on tumor-infiltrating lymphocytes in a humanized mouse model. Mol Imaging Biol 19(6):903–914. https://doi.org/10.1007/s11307-017-1060-3

    Article  CAS  Google Scholar 

  19. Cai Z, Anderson CJ (2014) Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals. J. Label. Compd. Radiopharm 57(4):224–230. https://doi.org/10.1002/jlcr.3165

    Article  CAS  Google Scholar 

  20. Woo SK, Jang SJ, Seo MJ, Park JH, Kim BS, Kim EJ, Lee YJ, Lee TS, An GI, Song IH, Seo Y, Kim KI, Kang JH (2019) Development of (64)Cu-NOTA-Trastuzumab for HER2 targeting: a radiopharmaceutical with improved pharmacokinetics for human studies. J Nucl Med 60(1):26–33. https://doi.org/10.2967/jnumed.118.210294

    Article  CAS  Google Scholar 

  21. Bailly C, Gouard S, Lacombe M, Remaud-Le Saec P, Chalopin B, Bourgeois M, Chouin N, Tripier R, Halime Z, Haddad F, Faivre-Chauvet A, Kraeber-Bodere F, Cherel M, Bodet-Milin C (2018) Comparison of Immuno-PET of CD138 and PET imaging with (64)CuCl2 and (18)F-FDG in a preclinical syngeneic model of multiple myeloma. Oncotarget 9(10):9061–9072. https://doi.org/10.18632/oncotarget.23886

    Article  Google Scholar 

  22. Zeng D, Guo Y, White AG, Cai Z, Modi J, Ferdani R, Anderson CJ (2014) Comparison of conjugation strategies of cross-bridged macrocyclic chelators with cetuximab for copper-64 radiolabeling and PET imaging of EGFR in colorectal tumor-bearing mice. Mol Pharm 11(11):3980–3987. https://doi.org/10.1021/mp500004m

    Article  CAS  Google Scholar 

  23. Dearling JL, Paterson BM, Akurathi V, Betanzos-Lara S, Treves ST, Voss SD, White JM, Huston JS, Smith SV, Donnelly PS, Packard AB (2015) The ionic charge of copper-64 complexes conjugated to an engineered antibody affects biodistribution. Bioconjug Chem 26(4):707–717. https://doi.org/10.1021/acs.bioconjchem.5b00049

    Article  CAS  Google Scholar 

  24. Lovqvist A, Humm JL, Sheikh A, Finn RD, Koziorowski J, Ruan S, Pentlow KS, Jungbluth A, Welt S, Lee FT, Brechbiel MW, Larson SM (2001) PET imaging of (86)Y-labeled anti-Lewis Y monoclonal antibodies in a nude mouse model: comparison between (86)Y and (111)In radiolabels. J Nucl Med 42(8):1281–1287

    CAS  Google Scholar 

  25. Nikula TK, Curcio MJ, Brechbiel MW, Gansow OA, Finn RD, Scheinberg DA (1995) A rapid, single vessel method for preparation of clinical grade ligand conjugated monoclonal antibodies. Nucl Med Biol 22(3):387–390. https://doi.org/10.1016/0969-8051(94)00126-5

    Article  CAS  Google Scholar 

  26. Tijink BM, Perk LR, Budde M, Stigter-van Walsum M, Visser GW, Kloet RW, Dinkelborg LM, Leemans CR, Neri D, van Dongen GA (2009) (124)I-L19-SIP for immuno-PET imaging of tumour vasculature and guidance of (131)I-L19-SIP radioimmunotherapy. Eur J Nucl Med Mol Imaging 36(8):1235–1244. https://doi.org/10.1007/s00259-009-1096-y

    Article  Google Scholar 

  27. Kumar K, Ghosh A (2021) Radiochemistry, production processes, labeling methods, and ImmunoPET imaging pharmaceuticals of Iodine-124. Molecules 26(2). https://doi.org/10.3390/molecules26020414

  28. Aerts HJWL, Dubois L, Perk L, Vermaelen P, van Dongen GAMS, Wouters BG, Lambin P (2009) Disparity between in vivo EGFR expression and (89)Zr-labeled cetuximab uptake assessed with PET. J Nucl Med 50(1):123–131. https://doi.org/10.2967/jnumed.108.054312

    Article  CAS  Google Scholar 

  29. Bailly C, Gouard S, Guerard F, Chalopin B, Carlier T, Faivre-Chauvet A, Remaud-Le Saec P, Bourgeois M, Chouin N, Rbah-Vidal L, Tripier R, Haddad F, Kraeber-Bodere F, Bodet-Milin C, Cherel M (2019) What is the best radionuclide for Immuno-PET of multiple myeloma? A comparison study between (89)Zr- and (64)Cu-labeled anti-CD138 in a preclinical syngeneic model. Int J Mol Sci 20(10). https://doi.org/10.3390/ijms20102564

Download references

Acknowledgments

We gratefully acknowledge the Radiochemistry and Molecular Imaging Probes Core (RMIP Core) at MSK, which is supported by NIH grant P30 CA08748. This work was also supported by NIH NCI R35 CA232130 (JSL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arroyo, A., Lyashchenko, S.K., Lewis, J.S. (2024). Methods for the Production of Radiolabeled Bioagents for ImmunoPET. In: Witney, T.H., Shuhendler, A.J. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 2729. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3499-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3499-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3498-1

  • Online ISBN: 978-1-0716-3499-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics