Skip to main content

Preparation of [68Ga]GaCl3 Using a Cyclotron

  • Protocol
  • First Online:
Positron Emission Tomography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2729))

Abstract

Recent developments in 68Ga-radiopharmaceuticals, including a number of regulatory approvals for clinical use, has created a hitherto unprecedented demand for 68Ga. Reliable access to enough 68Ga to meet growing clinical demand using only 68Ge/68Ga generators has been problematic in recent years. To address this challenge, we have optimized the direct production of 68Ga on a cyclotron via the 68Zn(p,n)68Ga reaction using a liquid target. This protocol describes the cyclotron-based production of [68Ga]GaCl3 implemented at the University of Michigan using a liquid target on GE PETtrace instrumentation. The protocol provides 56 ± 4 mCi (n = 3) of [68Ga]GaCl3 that meets the necessary quality control criteria to use for the preparation of 68Ga-radiopharmaceuticals for human use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, Gambhir SS, Hricak H, Weissleder R (2020) Radiotheranostics: a roadmap for future development. Lancet Oncol 21:e146–e156

    Article  CAS  Google Scholar 

  2. Qaim SM, Scholten B, Neumaier B (2018) New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318:1493–1509

    Article  CAS  Google Scholar 

  3. Pencharz D, Gnanasegaran G, Navalkissoor S (2018) Theranostics in neuroendocrine tumours: somatostatin receptor imaging and therapy. Br J Radiol 91:20180108

    Article  Google Scholar 

  4. FDA approves new diagnostic imaging agent to detect rare neuroendocrine tumors. [new release]. https://www.fda.gov/news-events/press-announcements/fda-approves-new-diagnostic-imaging-agent-detect-rare-neuroendocrine-tumors. Published 1 Jun 2016; Accessed 2 Jun 2021

  5. Sunderland JJ (2020) The Academic NDA: justification, process, and lessons learned. J Nucl Med 61:480–487

    Article  Google Scholar 

  6. RadioMedix and Curium Announce FDA Approval of Detectnet (copper Cu 64 dotatate injection) in the U.S. [news release]. https://www.curiumpharma.com/2020/09/08/radiomedix-and-curium-announce-fda-approval-of-detectnet-copper-cu-64-dotatate-injection-in-the-u-s/. Published 7-Sept-2020; Accessed 2 Jun 2021

  7. Hennrich U, Kopka K (2019) Lutathera®: The first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals (Basel) 12:114

    Article  CAS  Google Scholar 

  8. Carlucci G, Ippisch R, Slavik R, Mishoe A, Blecha J, Zhu S (2021) 68Ga-PSMA-11 NDA approval: a novel and successful academic partnership. J Nucl Med 62:149–155

    Article  CAS  Google Scholar 

  9. Wester HJ, Schottelius M (2019) PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med 49:302–312

    Article  Google Scholar 

  10. Kircher M, Herhaus P, Schottelius M, Buck AK, Werner RA, Wester HJ, Keller U, Lapa C (2018) CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med 32:503–511

    Article  CAS  Google Scholar 

  11. Calais J (2020) FAP: the next billion dollar nuclear theranostics target? J Nucl Med 61:163–165

    Article  Google Scholar 

  12. Fani M, André JP, Maecke HR (2008) 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 3:67–77

    Article  Google Scholar 

  13. Cutler CS, Minoshima S. (2018) Shortage of Germanium68/gallium68 generators in the United States. https://s3.amazonaws.com/rdcms-snmmi/files/production/public/Ga68%20shortage%20letter.pdf. Accessed 1 Jun 2021

  14. Rodnick ME, Sollert C, Stark D, Clark M, Katsifis A, Hockley BG, Parr DC, Frigell J, Henderson BD, Abghari-Gerst M, Piert MR, Fulham MJ, Eberl S, Gagnon K, Scott PJH (2020) Cyclotron-based production of 68Ga, [68Ga]GaCl3, and [68Ga]Ga-PSMA-11 from a liquid target. EJNMMI Radiopharm Chem 5:25

    Article  Google Scholar 

  15. Alves F, Alves VHP, Do Carmo SJC, Neves ACB, Silva M, Abrunhosa AJ (2017) Production of copper-64 and gallium-68 with a 481 medical cyclotron using liquid targets. Mod Phys Lett A 32:1740013

    Article  CAS  Google Scholar 

  16. Engle JW, Lopez-Rodriguez V, Gaspar-Carcamo RE, Valdovinos HF, Valle-Gonzalez M, Trejo-Ballado F et al (2012) Very high specific activity 66/68Ga from zinc targets for PET. Appl Radiat Isot 70:1792–1796

    Article  CAS  Google Scholar 

  17. Graves SA, Engle JW, Eriksson TE, Gagnon K (2018) Dosimetry of cyclotron-produced [68Ga]Ga-PSMA-11, [68Ga]Ga-DOTA-TATE, and [68Ga]Ga-DOTA-TOC. J Nucl Med 59(Suppl. 1):1003

    Google Scholar 

  18. Jensen M, Clark JC. (2011) Direct production of Ga-68 from proton bombardment of concentrated aqueous solutions of [Zn-68] Zinc Chloride. In The 13th International Workshop on Targetry and Target Chemistry Proceedings by Horoun S, Givskov and Jensen M (Eds). Risø DTU, National Laboratory for Sustainable Energy, Technical University of Denmark. Roskilde. 288–292. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/006/43006750.pdf. Accessed 12 Aug 2020

  19. Lin M, Waligorski GJ, Lepera CG (2018) Production of curie quantities of 68Ga with a medical cyclotron via the 68Zn(p,n)68Ga reaction. Appl Radiat Isot 133:1–3

    Article  CAS  Google Scholar 

  20. Nair M, Happel S, Eriksson T, Pandey M, DeGrado T, Gagnon K (2017) Cyclotron production and automated new 2-column processing of [68Ga]GaCl3. Eur J Nucl Med Mol Imaging 44(Suppl 2):S119–S956

    Google Scholar 

  21. Pandey MK, Byrne JF, Jiang H, Packard AB, DeGrado TR (2014) Cyclotron production of 68Ga via the 68Zn(p,n) 68Ga reaction in aqueous solution. Am J Nucl Med Mol Imaging 4:303–310

    Google Scholar 

  22. Pandey MK, Byrne JF, Schlasner KN, Schmit NR, DeGrado TR (2019) Cyclotron production of 68Ga in a liquid target: Effects of solution composition and irradiation parameters. Nucl Med Biol 74/75:49–55

    Article  Google Scholar 

  23. Riga S, Cicoria G, Pancaldi D, Zagni F, Vichi S, Dassenno M et al (2018) Production of Ga-68 with a General Electric PETtrace cyclotron by liquid target. Phys Med 55:116–126

    Article  Google Scholar 

  24. Zeisler S, Limoges A, Kumlin J, Siikanen J, Hoehr C (2019) Fused zinc target for the production of gallium radioisotopes. Instruments 3:10

    Article  CAS  Google Scholar 

  25. Sadeghi M, Kakavand T, Rajabifar S, Mokhtari L, Rahimi-Nezhad A (2009) Cyclotron production of 68Ga via proton-induced reaction on 68Zn target. Nukleonika 54:25–28

    CAS  Google Scholar 

  26. Gallium (68Ga) Chloride (accelerator produced) solution for radiolabelling. European Pharmacopoeia 2020;10(Suppl. 10.3):4864–4865

    Google Scholar 

  27. International Atomic Energy Agency (2019) Gallium-68 Cyclotron Production, IAEA-TECDOC-1863. IAEA, Vienna

    Google Scholar 

  28. New CRP: Production of Cyclotron-Based Gallium-68 Radioisotope and Related Radiopharmaceuticals (F22073). https://www.iaea.org/newscenter/news/new-crp-production-of-cyclotron-based-gallium-68-radioisotope-and-related-radiopharmaceuticals-f22073. Accessed 2 Jun 2021

  29. Rinne SS, Abouzayed A, Gagnon K, Tolmachev V, Orlova A (2021) 66Ga-PET-imaging of GRPR-expression in prostate cancer: production and characterization of [66Ga]Ga-NOTA-PEG2-RM26. Sci Rep 11:3631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Gagnon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodnick, M.E., Sollert, C., Parr, D.C., Frigell, J., Gagnon, K., Scott, P.J.H. (2024). Preparation of [68Ga]GaCl3 Using a Cyclotron. In: Witney, T.H., Shuhendler, A.J. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 2729. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3499-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3499-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3498-1

  • Online ISBN: 978-1-0716-3499-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics