Skip to main content

PET System Technology: Theoretical Aspects and Experimental Methodology

  • Protocol
  • First Online:
Positron Emission Tomography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2729))

Abstract

Positron emission tomography (PET) imaging provides unique information of the cellular and molecular pathways of disease occurring within the human body, using measurements made from outside the body, which has shown utility in a variety of studies from basic research to clinical applications. This chapter describes some of the most relevant PET system parameters that impact its imaging performance such as 3D spatial, energy, and coincidence timing resolutions and the methodology typically used to evaluate those parameters. In addition, the physical principles underlying PET imaging, PET photon detector technology, and coincidence detection are also described. As a closing remark, the future perspectives of PET imaging and its simultaneous use with anatomical imaging techniques (e.g., computed tomography [CT] and magnetic resonance imaging [MRI]) are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Nat Acad Sci 97(16):9226–9233

    Article  CAS  Google Scholar 

  2. Rich DA (1997) A brief history of positron emission tomography. J Nucl Med Technol 25(1):4–11

    CAS  Google Scholar 

  3. Brownel GA (1999) A history of positron imaging. Phys Research Laboratory Massachusetts General Hospital

    Google Scholar 

  4. Jones T, Townsend D (2017) History and future technical innovation in positron emission tomography. J Med Imaging 4(1):011013

    Article  Google Scholar 

  5. Dirac PAM (1929) A theory of electrons and protons. Proc Camb Soc 126(801). https://doi.org/10.1098/rspa.1930.0013

  6. Anderson CD (1933) The positive electron. Phys Rev 43(491). https://doi.org/10.1103/PhysRev.43.491

  7. Ruben S, Kamen MD, Hassid WZ (1940) Photosynthesis with radioactive carbon: II. Chemical properties of the intermediates. Jam Chern Soc 62(12):3443–3450

    Article  CAS  Google Scholar 

  8. Melcher CL (2000) Scintillation crystals for PET*. J Nucl Med 41(6):1051–1055

    CAS  Google Scholar 

  9. Croll MN (1994) Nuclear medicine instrumentation. Historic perspective. Semin Nucl Med 24(1):3–10. https://doi.org/10.1016/s0001-2998(05)80245-4

    Article  CAS  Google Scholar 

  10. Wrenn FR, Good ML, Handler P (1951) The use of positron-emitting radioisotopes for the localization of brain tumors. Science 19(2940):525–527. https://doi.org/10.1126/science.113.2940.525

    Article  Google Scholar 

  11. Brownell GL, Sweet WH (1955) Localization of brain tumors with positron emitters. Nucleonics 4:326–330

    Google Scholar 

  12. Rankowitz S, Robertson JS, Higinbotham WA, Rosenblum MJ (1962) Positron scanner for locating brain tumors, vol 9. Proceeding of the Institute of Radio Engineers, Brookhaven National Lab., (BNL), Upton, pp 49–56

    Google Scholar 

  13. Anger HO, Gottschalk A (1963) Localization of brain tumors with the positron scintillation camera. J Nucl Med 4:326–330

    CAS  Google Scholar 

  14. Thompson CJ, Yamamoto YL, Meyer E (1976) A position imaging system for the measurement of regional cerebral blood flow, vol 96. Application of Optical Instrumentation in Medicine V, SPIE Proceedings. https://doi.org/10.1117/12.965421

    Book  Google Scholar 

  15. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16(3):210–224

    CAS  Google Scholar 

  16. Williams CW, Crabtree MC, Burgiss SG (1979) Design and performance characteristics of a positron emission computed axial tomograph—ECAT®-II. IEEE Trans Nucl Sci 26(1):619–627

    Article  Google Scholar 

  17. Hoffman EJ, Ricci AR, van der Stee LMAM, Phelps ME (1983) ECAT III—basic design considerations. IEEE Trans Nucl Sci 30(1):729–733

    Article  Google Scholar 

  18. Ido T, Wan CN, Casella V, Fowler JS et al (1978) Labeled 2-deoxy-D-glucose analogs. Fluorine-18-labeled 2-deoxy-2-fluoro- D-glucose. 2-deoxy- 2-fluoro-D-man- nose, and C-14-2-fluoro-D-glucose. J Lab Compd Radiopharm 14(2):175–183

    Article  CAS  Google Scholar 

  19. Townsend DW, Wensveen M, Byars LG, Geissbuhler A et al (1933) A rotating PET scanner using BGO block detectors: design, performance and applications. J Nucl Med 34(8):1367–1376

    Google Scholar 

  20. Capasso F (1985) Chapter 1 physics of avalanche photodiodes. Semiconductors and Semimetals. Vol 22. Part D, pp 1–172

    Google Scholar 

  21. Bloomfield PM, Myers R, Hume SP et al (1997) Three-dimensional performance of a small-diameter positron emission tomograph. Phys Med Biol 42(2):389–400

    Article  CAS  Google Scholar 

  22. Cherry SR, Shao Y, Silverman RW, Meadors K et al (1997) MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 3:1161–1166

    Article  Google Scholar 

  23. Miller M, Zhang J, Binzel K, Griesmer J et al (2015) Characterization of the Vereos digital photon counting PET system. J Nucl Med 56(3):434

    Google Scholar 

  24. Siemens Biograph Vision Technical Sheet, retrieved April (2019). www.siemens-healthineers.com

  25. Gonzalez AJ, Sanchez F, Benlloch JM (2018) Organ-dedicated molecular imaging systems. IEEE Trans Rad Plasma Med Sci 2(5):388–403

    Article  Google Scholar 

  26. Mullani NA, Gaeta J, Yerian K, Wong WH et al (1984) Dynamic imaging with high resolution time-of-flight PET camera-TOFPET I. IEEE Trans Nucl Sci 31(1):609–613

    Article  Google Scholar 

  27. Ter-Pogossian MM, Mullani NA, Ficke DC et al (1981) Photon time-of-flight assisted positron emission tomography. J Comput Assist Tomogr 5(2):227–239

    Article  CAS  Google Scholar 

  28. Cherry SR, Jones T, Karp JS, Qi J et al (2018) Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 59(1):3–12

    Article  CAS  Google Scholar 

  29. del Guerra A, Belcari N, Bisogni M (2016) Positron emission tomography: its 65 years. Rivista del nuovo cimento 39(4). https://doi.org/10.1393/ncr/i2016-10122-6

  30. Ter-Pogossian MM, Raichle ME, Sobel BE (1980) Positron emission tomography (PET). Sci Am 243(4):170–181

    Article  CAS  Google Scholar 

  31. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44(3):781–799

    Article  CAS  Google Scholar 

  32. Evans RD (1955) The atomic nucleus. McGraw-Hill, New York, LCCCN, pp 55–7275

    Google Scholar 

  33. Krane KS (1995) Introductory Nuclear Physics. Wiley, New York

    Google Scholar 

  34. Compton AH (1923) A quantum theory of the scattering of X-rays by light elements. Phys Rev 21(5):483

    Article  CAS  Google Scholar 

  35. Ford RL, Nelson W (1978) The EGS code system: computer programs for the Monte Carlo simulations of electromagnetic cascade showers. SLAC-210, UC-32, Stanford

    Google Scholar 

  36. Decuyper M, Stockhoff M, Vandenberghe S, Van Holen R (2021) Artificial neural networks for positioning of gamma interactions in monolithic PET detectors. Phys Med Biol 66(7):075001

    Article  CAS  Google Scholar 

  37. Fleming O (1999) Radioisotopes and radiation methodology: chapter 4 scintillation detectors. John Wiley & Sons, Inc. Med Phys 4R06/6R03, pp 4–10

    Google Scholar 

  38. Knoll GF (2010) Radiation detection and measurement. John Wiley and sons. Inc, New York

    Google Scholar 

  39. Sabet H, Bläckberg L, Uzun-Ozsahin D, El-Fakhri G (2016) Novel laser-processed CsI:Tl detector for SPECT. Med Phys 43(5):2630

    Article  CAS  Google Scholar 

  40. Gonzalez-Montoro A, Gonzalez AJ, Pourashraf S, Miyaoka RS et al (2021) Evolution of PET detectors and event positioning algorithms using monolithic scintillation crystals. IEEE Trans Rad Plasma Med Sciences 5(3):282–305

    Article  Google Scholar 

  41. Levin CS (2003) Detector design issues for compact nuclear emission cameras dedicated to breast imaging. Nucl Instrum Methods Phys Res A 497(1):60–74

    Article  CAS  Google Scholar 

  42. Flyckt S-O, Marmonier C (2002) Photomultiplier tubes principles & applications. Phonis Brive, France. https://www2.pv.infn.it/~debari/doc/Flyckt_Marmonier.pdf

    Google Scholar 

  43. Dinu N (2013) Instrumentation on silicon detectors: from properties characterization to applications. Université Paris Sud-Paris XI. http://tel.archives-ouvertes.fr/tel-00872318

    Google Scholar 

  44. González AJ, Conde P, Hernandez L, Herrero V et al (2013) Design of the PET-MR system for head imaging of the DREAM project. Nucl Instrum Methods Phys Res A 702:94–97

    Article  Google Scholar 

  45. Motoyoshi M (2009) Through-Silicon Via (TSV). IEEE Proceeding 97(1):43–48

    Article  CAS  Google Scholar 

  46. Schaart DR, Charbon E, Frach T, Schulz V (2015) Advances in digital dSiPMs and their application in biomedical imaging. Nucl Instrum Methods Phys Res A 809:31–52

    Article  Google Scholar 

  47. Stolin V, Majewski S, Jaliparthi G, Raylman RR, Proffit J (2013) Evaluation of imaging modules based on SensL array SB-8 for nuclear medicine applications. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference. https://doi.org/10.1109/NSSMIC.2013.6829079

    Book  Google Scholar 

  48. Kanno I, Lammertsma AA, Heather JD, Gibbs JM et al (1984) Measurements of cerebral blood flow using bolus inhalation of C15O2 and positron emission tomography: description of the method and comparison with C15O2 continuous inhalation method. J Cereb Blood Flow Metabol 4(2):224–234

    Article  CAS  Google Scholar 

  49. Warburg O (1931) The metabolism of tumors. Richard Smith, New York, pp 129–161

    Google Scholar 

  50. Huang SC, Carson RE, Hoffman EJ, Carson J et al (1983) Quantitative measurement of local cerebral blood flow in humans by positron emission tomography and 15O-water. J Cereb Blood Flow Metabol 3(2):141–153

    Article  CAS  Google Scholar 

  51. Fendler WP, Calais J, Eiber M, Flavell RR et al (2019) Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer a prospective single-arm clinical trial. JAMA Oncol 5(6):856–863

    Article  Google Scholar 

  52. Gopal BS (2010) Basics of PET imaging. Physics, chemistry, and regulations. Springer. ISBN: 978-3-319-16422-9

    Google Scholar 

  53. Wernick MN, Aarsvold JN (2004) Emission tomography: the fundamentals of PET and SPECT. Elsevier, Imprint: Academic Press, Inc. ISBN: 0-12-744482-3, 576

    Google Scholar 

  54. Kinahan PE, Rogers JG (1989) Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 36(1):964–968

    Article  CAS  Google Scholar 

  55. Cherry SR, Sorenson JA, Phelps ME (2003) Physics in nuclear medicine. Saunders/Elsevier Science, Philadelphia. ISBN 0-7216-8341-X

    Google Scholar 

  56. Du H, Yang Y, Glodo J, Wu Y et al (2009) Continuous depth-of-interaction encoding using phosphor-coated scintillators. Phys Med Biol 54(6):1757–1771

    Article  CAS  Google Scholar 

  57. Son JW, Lee MS, Lee JS (2017) A depth-of-interaction PET detector using a stair-shaped reflector arrangement and a single-ended scintillation light readout. Phys Med Biol 62(2):465–483

    Article  CAS  Google Scholar 

  58. Kuang Z, Sang Z, Wang X, Fu X et al (2018) Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs. Med Phys 45(2):613–621

    Article  CAS  Google Scholar 

  59. Zen G (2010) Medical image reconstruction. Springer. ISBN-10: 364205367X

    Google Scholar 

  60. Surti S, Karp JS (2008) Design considerations for a limited-angle, dedicated breast, TOF PET scanner. Phys Med Biol 53(11):2911–2921

    Article  CAS  Google Scholar 

  61. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G (2008) Benefit of time-of- flight in PET: experimental and clinical results. J Nucl Med 49(3):462–470

    Article  Google Scholar 

  62. Vanderberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS (2016) Recent developments in time-of-flight PET. Eur J Nucl Mol Med Imag 3(3). https://doi.org/10.1186/s40658-016-0138-3

  63. Gundacker S, Auffray E, Pauwels K, Lecoq P (2016) Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys Med Biol 61(7):2802–2837

    Article  CAS  Google Scholar 

  64. Gonzalez-Montoro A, Pourashraf S, Lee MS, Cates JW, Levin CS (2021) Study of optical reflectors used in scintillation detectors that achieve 100 ps coincidence time resolution for TOF-PET. Biomed Phys Eng Express 7(6). https://doi.org/10.1088/2057-1976/ac240e

  65. Pourashraf S, Gonzalez-Montoro A, Won JY, Lee MS et al (2021) Scalable electronic readout design for a 100 ps coincidence time resolution TOF-PET system. Phys Med Biol 66(8):095005. https://doi.org/10.1088/1361-6560/abf1bc

    Article  CAS  Google Scholar 

  66. Cates JW, Levin CS (2018) Evaluation of a clinical TOF-PET detector design that achieves ≤100 ps coincidence time resolution. Phys Med Biol 63(11):115011

    Article  Google Scholar 

  67. Stickel JR (2005) High-resolution PET detector design: modelling components of intrinsic spatial resolution. Phys Med Bio 50(2):179–195

    Article  Google Scholar 

  68. Lecoq P (2017) Pushing the limits in time-of-flight PET imaging. IEEE Trans Rad Plasma Med Sci 1(6):473–485

    Article  Google Scholar 

  69. Kang HG, Yamaya T, Han YB, Song SH et al (2020) Crystal surface and reflector optimization for the SiPM-based dual-ended readout TOF-DOI PET detector. Biomed Phys Eng Express 6(6). https://doi.org/10.1088/2057-1976/abc45a

  70. Berg E, Roncali E, Cherry SR (2015) Optimizing light transport in scintillation crystals for time-of-flight PET: an experimental and optical Monte Carlo simulation study. Biomed Opt Expres 6(6):2220–2230

    Article  Google Scholar 

  71. Spanoudaki V, Levin CS (2010) Photo-detectors for time of flight positron emission tomography (ToF-PET). Sensors 10(11):10484–10505

    Article  CAS  Google Scholar 

  72. NEMA NU 2-2018 (2018) Performance measurements of positron emission Tomographs (PET). National Electrical Manufacturers Association

    Google Scholar 

  73. Defrise M, Kinahan PE, Michel CJ (2005) Image reconstruction algorithms in PET. Springer. ISBN: 978-1-85233-798-8

    Book  Google Scholar 

  74. Yang X, Peng H (2015) Study of the relationship between NECR and image SNR for PET systems. J Nucl Med 56(3):1743

    Google Scholar 

  75. Tang S, Liu Y, Wang J, Zhao Y et al (2019) Dead time correction method for long axial field-of-view, whole-body PET scanner. J Nucl Med 60(1):458

    Google Scholar 

  76. Grant AM, Levin CS (2014) A new dual threshold time-over-threshold circuit for fast timing in PET. Phys Med Biol 59(13):3421–3430

    Article  Google Scholar 

  77. Lecoq P, Auffray E, Knapitsch A (2013) How photonic crystals can improve the timing resolution of scintillators. IEEE Trans Nucl Science 60(3):1653–1657

    Article  CAS  Google Scholar 

  78. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37(2):505–515

    Article  Google Scholar 

  79. Gerven M, Bohte S (2017) Artificial neural networks as models of neural information processing. Front Comput Neurosci 11:114. https://doi.org/10.3389/fncom.2017.00114

    Article  Google Scholar 

  80. Vanderberghe S, Moskal P, Karp JS (2020) State of the art in total body PET. EJNMMI Physics 7(1):35. https://doi.org/10.1186/s40658-020-00290-2

    Article  Google Scholar 

  81. Lee JS, Park KS, Lee DS, Lee CW et al (2005) Development and applications of a software for functional image registration (FIRE). Comput Meth Prog Biomed 78(2):157–164

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH grants R01CA214669 and R01EB025125 and by the VALi+d Program for Researchers in Postdoctoral Phase of the Ministry of Labor and Social Economy (Generalitat de Valencia) and the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez-Montoro, A., Levin, C.S. (2024). PET System Technology: Theoretical Aspects and Experimental Methodology. In: Witney, T.H., Shuhendler, A.J. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 2729. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3499-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3499-8_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3498-1

  • Online ISBN: 978-1-0716-3499-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics