Skip to main content

Identification of Culprit Genes for Different Diseases by Analyzing Microarray Data

  • Protocol
  • First Online:
Reverse Engineering of Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2719))

  • 583 Accesses

Abstract

The identification of disease-causing genes is the first and most important step toward understanding the biological mechanisms underlying a disease. Microarray analysis is one such powerful method that is widely used to identify genes that are expressed differently in two or more conditions (disease vs. normal). Because of its large library of statistical R packages and user-friendly interface, the R programming language provides a platform for microarray analysis. In this chapter, we will go over how to identify disease-causing culprit genes from the raw microarray data, using various packages of R programming. The pipeline overviews the steps in microarray analysis, such as data pre-processing, normalization, and statistical analysis using visualization techniques such as heatmaps, box plots, and so on. To better understand the function of the altered genes, gene ontology and pathway analysis are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohammadi A, Saraee MH, Salehi M (2011) Identification of disease-causing genes using microarray data mining and gene ontology. BMC Med Genet 4(1):1–9

    Google Scholar 

  2. Ma C, Ji T (2018) Detecting differentially expressed genes for syndromes by considering change in mean and dispersion simultaneously. BMC Bioinform 19(1):330

    Article  Google Scholar 

  3. Selvaraj S, Natarajan J (2011) Microarray data analysis and mining tools. Bioinformation 6(3):95–99

    Article  Google Scholar 

  4. Lee MLT (2007) Analysis of microarray gene expression data. Springer Science & Business Media, Springer New York Inc.

    Google Scholar 

  5. Almugren N, Alshamlan H (2019) A survey on hybrid feature selection methods in microarray gene expression data for cancer classification. IEEE Access 7:78533–78548

    Article  Google Scholar 

  6. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315

    Article  Google Scholar 

  7. MacDonald JW (2019) Affycoretools: functions useful for those doing repetitive analyses with Affymetrix GeneChips. (2018). R package version 1(1)

    Google Scholar 

  8. Kauffmann A, Gentleman R, Huber W (2009) arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25(3):415–416

    Article  Google Scholar 

  9. Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  Google Scholar 

  10. org.Hs.eg.db. In: Bioconductor. http://bioconductor.org/packages/org.Hs.eg.db/

  11. hgu133a.db. In: Bioconductor. http://bioconductor.org/packages/hgu133a.db/

  12. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation 2(3):100141

    Article  Google Scholar 

  13. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol 16(5):284–287

    Article  Google Scholar 

  14. Sui Y, Zhao X, Speed TP, Wu Z (2009) Background adjustment for DNA microarrays using a database of microarray experiments. J Comput Biol 16(11):1501–1515

    Article  MathSciNet  Google Scholar 

  15. Fundel K, Haag J, Gebhard PM, Zimmer R, Aigner T (2008) Normalization strategies for mRNA expression data in cartilage research. Osteoarthr Cartil 16(8):947–955

    Article  Google Scholar 

Download references

Acknowledgments

CM gratefully acknowledges MAKAUT, WB for providing computational facilities and Sweta Paul, student of M.Sc. Bioinformatics for building partial R data analysis pipeline.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Banerjee, A.K., Ghosh, S., Mal, C. (2024). Identification of Culprit Genes for Different Diseases by Analyzing Microarray Data. In: Mandal, S. (eds) Reverse Engineering of Regulatory Networks. Methods in Molecular Biology, vol 2719. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3461-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3461-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3460-8

  • Online ISBN: 978-1-0716-3461-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics