Skip to main content

The Global Acetylation Profiling Pipeline for Quick Assessment of Protein N-Acetyltransferase Specificity In Cellulo

  • Protocol
  • First Online:
Mass Spectrometry-Based Proteomics

Abstract

Global acetylation profiling (GAP) consists of heterologous expression of a given N-acetyltransferase (NAT) in Escherichia coli to assess its specificity. The remarkable sensitivity and robustness of the GAP pipeline relies on the very low frequency of known N-terminal acetylated proteins in E. coli, including their degree of N-terminal acetylation. Using the SILProNAQ mass spectrometry strategy on bacterial protein extracts, GAP permits easy acquisition of both qualitative and quantitative data to decipher the impact of any putative NAT of interest on the N-termini of newly acetylated proteins. This strategy allows rapid determination of the substrate specificity of any NAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bogaert A, Gevaert K (2020) Protein amino-termini and how to identify them. Expert Rev Proteomics 17(7–8):581–594

    Article  CAS  PubMed  Google Scholar 

  2. Starheim KK, Gevaert K, Arnesen T (2012) Protein N-terminal acetyltransferases: when the start matters. Trends Biochem Sci 37(4):152–161

    Article  CAS  PubMed  Google Scholar 

  3. Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F, Gevaert K (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci U S A 106(20):8157–8162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R (2012) N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A 109(31):12449–12454

    Article  PubMed  PubMed Central  Google Scholar 

  5. Polevoda B, Norbeck J, Takakura H, Blomberg A, Sherman F (1999) Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J 18(21):6155–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Polevoda B, Sherman F (2001) NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J Biol Chem 276(23):20154–20159

    Article  CAS  PubMed  Google Scholar 

  7. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C (2012) Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol Cell Proteomics 11(6):M111.015131

    Article  PubMed  PubMed Central  Google Scholar 

  8. Van Damme P, Evjenth R, Foyn H, Demeyer K, De Bock PJ, Lillehaug JR, Vandekerckhove J, Arnesen T, Gevaert K (2011) Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase. Mol Cell Proteomics 10(5):M110.004580

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bienvenut WV, Giglione C, Meinnel T (2015) Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition. Proteomics 15(14):2503–2518

    Article  CAS  PubMed  Google Scholar 

  10. Giglione C, Boularot A, Meinnel T (2004) Protein N-terminal methionine excision. Cell Mol Life Sci 61(12):1455–1474

    Article  CAS  PubMed  Google Scholar 

  11. Giglione C, Pierre M, Meinnel T (2000) Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol Microbiol 36(6):1197–1205

    Article  CAS  PubMed  Google Scholar 

  12. Giglione C, Fieulaine S, Meinnel T (2009) Cotranslational processing mechanisms: towards a dynamic 3D model. Trends Biochem Sci 34(8):417–426

    Article  CAS  PubMed  Google Scholar 

  13. Giglione C, Fieulaine S, Meinnel T (2015) N-terminal protein modifications: bringing back into play the ribosome. Biochimie 114:134–146

    Article  CAS  PubMed  Google Scholar 

  14. Dinh TV, Bienvenut WV, Linster E, Feldman-Salit A, Jung VA, Meinnel T, Hell R, Giglione C, Wirtz M (2015) Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling. Proteomics 15(14):2426–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, Knoops K, Bauer M, Aebersold R, Heinemann M (2016) The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol 34(1):104–110

    Article  CAS  PubMed  Google Scholar 

  16. Perez L, Ryu Y (2015) RimJ-catalyzed sequence-specific protein N-terminal acetylation in Escherichia coli. Adv Biosci Biotechnol 6(3):182–193

    Article  Google Scholar 

  17. Bienvenut WV, Giglione C, Meinnel T (2017) SILProNAQ: a convenient approach for proteome-wide analysis of protein N-termini and N-terminal acetylation quantitation. Methods Mol Biol 1574:17–34

    Article  CAS  PubMed  Google Scholar 

  18. Bienvenut WV, Scarpelli JP, Dumestier J, Meinnel T, Giglione C (2017) EnCOUNTer: a parsing tool to uncover the mature N-terminus of organelle-targeted proteins in complex samples. BMC Bioinformatics 18(1):182

    Article  PubMed  PubMed Central  Google Scholar 

  19. Giglione C, Meinnel T (2021) Evolution-driven versatility of N terminal acetylation in photoautotrophs. Trends Plant Sci 26(4):375–391

    Article  CAS  PubMed  Google Scholar 

  20. Bienvenut WV, Brünje A, Boyer J-B, Mühlenbeck JS, Bernal G, Lassowskat I, Dian C, Linster E, Dinh TV, Koskela MM, Jung V, Seidel J, Schyrba LK, Ivanauskaite A, Eirich J, Hell R, Schwarzer D, Mulo P, Wirtz M, Meinnel T, Giglione C, Finkemeier I (2020) Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation. Mol Syst Biol 16(7):e9464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huber M, Bienvenut WV, Linster E, Stephan I, Armbruster L, Sticht C, Layer DC, Lapouge K, Meinnel T, Sinning I, Giglione C, Hell R, Wirtz M (2020) NatB-mediated N-terminal acetylation affects growth and abiotic stress responses. Plant Physiol 182(2):792–806

    Article  CAS  PubMed  Google Scholar 

  22. Linster E, Layer D, Bienvenut WV, Dinh TV, Weyer FA, Leemhuis W, Brünje A, Hoffrichter M, Miklankova P, Kopp J, Lapouge K, Sindlinger J, Schwarzer D, Meinnel T, Finkemeier I, Giglione C, Hell R, Sinning I, Wirtz M (2020) The Arabidopsis Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response. New Phytol 228(2):554–569

    Article  CAS  PubMed  Google Scholar 

  23. Linster E, Stephan I, Bienvenut WV, Maple-Grodem J, Myklebust LM, Huber M, Reichelt M, Sticht C, Geir Moller S, Meinnel T, Arnesen T, Giglione C, Hell R, Wirtz M (2015) Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat Commun 6:7640

    Article  CAS  PubMed  Google Scholar 

  24. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

  25. Asensio T, Dian C, Boyer JB, Rivière F, Meinnel T, Giglione C (2022) A continuous assay set to screen and characterize novel protein N-acetyltransferases unveils rice general control non-repressible 5-related N-acetyltransferase 2 activity. Front Plant Sci 13:832144

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liszczak G, Goldberg JM, Foyn H, Petersson EJ, Arnesen T, Marmorstein R (2013) Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nat Struct Mol Biol 20(9):1098–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by KatNat (ERA-NET, ANR-17-CAPS-0001-01) and CanMore (France-Germany PRCI, ANR-20 CE92-0040) grants funded by French National Research Agency (ANR). This work has benefited from the support of a French State grant (ANR-17-EUR-0007, EUR SPS-GSR) managed by the ANR under an Investments for the Future program (ANR-11-IDEX-0003-02), from the facilities and expertise of the I2BC proteomic platform (Proteomic-Gif, SICaPS), supported by IBiSA, Ile de France Region, Plan Cancer, CNRS and Paris-Saclay University, and from COST Action CA20113, supported by COST (European Cooperation in Science and Technology). We thank Lucile Jomat and Mahmoud Abdou (This team) for their contributions to the setting of robust plasmid and bacterial sample preparations, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thierry Meinnel or Carmela Giglione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meinnel, T., Boyer, JB., Giglione, C. (2023). The Global Acetylation Profiling Pipeline for Quick Assessment of Protein N-Acetyltransferase Specificity In Cellulo. In: Gevaert, K. (eds) Mass Spectrometry-Based Proteomics. Methods in Molecular Biology, vol 2718. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3457-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3457-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3456-1

  • Online ISBN: 978-1-0716-3457-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics