Skip to main content

Exploring Uniform, Dual, and Dynamic Topologies of Membrane Proteins by Substituted Cysteine Accessibility Method (SCAM™)

  • Protocol
  • First Online:
Bacterial Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2715))

Abstract

A described simple and advanced protocol for Substituted Cysteine Accessibility Method as applied to transmembrane (TM) orientation (SCAM™) permits a topology analysis of proteins in their native state and can be universally adapted to any membrane system to either systematically map an uniform or identify and quantify the degree of mixed topology or establish transmembrane assembly dynamics from relatively static experimental data such as endpoint topologies of membrane proteins. In this approach, noncritical individual amino acids that are thought to reside in the putative extracellular or intracellular loops of a membrane protein are replaced one at the time by cysteine residue, and the orientation with respect to the membrane is evaluated by using a pair of membrane-impermeable non-detectable and detectable thiol-reactive labeling reagents. For the most water-exposed cysteine residues in proteins, the thiol pKa lies in the range of 8–9, and formation of cysteinyl thiolate ions is optimum in aqueous rather in a nonpolar environment. These features and the ease of specific chemical modification with thiol reagents are central to SCAM™. Membrane side-specific sulfhydryl labeling allows to discriminate “exposed, protected or dynamic” cysteines strategically “implanted” at desired positions throughout cysteine less target protein template. The strategy described is widely used to map the topology of membrane protein and establish its transmembrane dynamics in intact cells of both diderm (two-membraned) Gram-negative and monoderm (one-membraned) Gram-positive bacteria, cell-derived oriented membrane vesicles, and proteoliposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918

    Article  Google Scholar 

  2. Bogdanov M, Xie J, Dowhan W (2009) Lipid-protein interactions drive membrane protein topogenesis in accordance with the positive inside rule. J Biol Chem 284:9637–9641. https://doi.org/10.1074/jbc.R800081200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dowhan W, Bogdanov M (2009) Lipid-dependent membrane protein topogenesis. Annu Rev Biochem 78:515–540. https://doi.org/10.1146/annurev.biochem.77.060806.091251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bogdanov M, Dowhan W, Vitrac H (2014) Lipids and topological rules governing membrane protein assembly. Biochim Biophys Acta 1843:1475–1488. https://doi.org/10.1016/j.bbamcr.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  5. Dowhan W, Vitrac H, Bogdanov M (2019) Lipid-assisted membrane protein folding and topogenesis. Protein J 38:274–288. https://doi.org/10.1007/s10930-019-09826-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bogdanov M, Xie J, Heacock P, Dowhan W (2008) To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J Cell Biol 182:925–935. https://doi.org/10.1083/jcb.200803097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bogdanov M, Heacock PN, Dowhan W (2002) A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J 21:2107–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang W, Bogdanov M, Pi J, Pittard AJ, Dowhan W (2003) Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J Biol Chem 278:50128–50135

    Article  CAS  PubMed  Google Scholar 

  9. Bogdanov M, Dowhan W (2012) Lipid-dependent generation of a dual topology for a membrane protein. J Biol Chem 287:37939–37948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slatin SL, Nardi A, Jakes KS, Baty D, Duche D (2002) Translocation of a functional protein by a voltage-dependent ion channel. Proc Natl Acad Sci U S A 99:1286–1291. https://doi.org/10.1073/pnas.022480199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nishiyama K-i, Suzuki T, Tokuda H (1996) Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85:71–81

    Article  CAS  PubMed  Google Scholar 

  12. Woodall NB, Hadley S, Yin Y, Bowie JU (2017) Complete topology inversion can be part of normal membrane protein biogenesis. Protein Sci 26:824–833. https://doi.org/10.1002/pro.3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vitrac H, MacLean DM, Karlstaedt A, Taegtmeyer H, Jayaraman V, Bogdanov M, Dowhan W (2017) Dynamic lipid-dependent modulation of protein topology by post-translational phosphorylation. J Biol Chem 292:1613–1624. https://doi.org/10.1074/jbc.M116.765719

    Article  CAS  PubMed  Google Scholar 

  14. Bogdanov M, Vitrac H, Dowhan W (2018) Flip-flopping membrane proteins: how the charge balance rule governs dynamic membrane protein topology. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 1–28

    Google Scholar 

  15. Bogdanov M, Zhang W, Xie J, Dowhan W (2005) Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM™): application to lipid-specific membrane protein topogenesis. Methods 36:148–171. https://doi.org/10.1016/j.ymeth.2004.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fleishman SJ, Unger VM, Ben-Tal N (2006) Transmembrane protein structures without X-rays. Trends Biochem Sci 31:106–113. https://doi.org/10.1016/j.tibs.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  17. Lacapere JJ, Pebay-Peyroula E, Neumann JM, Etchebest C (2007) Determining membrane protein structures: still a challenge! Trends Biochem Sci 32:259–270. https://doi.org/10.1016/j.tibs.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  18. Bochud A, Ramachandra N, Conzelmann A (2013) Adaptation of low-resolution methods for the study of yeast microsomal polytopic membrane proteins: a methodological review. Biochem Soc Trans 41:35–42. https://doi.org/10.1042/BST20120212

    Article  CAS  PubMed  Google Scholar 

  19. Bogdanov M, Heacock PN, Dowhan W (2010) Study of polytopic membrane protein topological organization as a function of membrane lipid composition. Methods Mol Biol 619:79–101. https://doi.org/10.1007/978-1-60327-412-8_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nasie I, Steiner-Mordoch S, Gold A, Schuldiner S (2010) Topologically random insertion of EmrE supports a pathway for evolution of inverted repeats in ion-coupled transporters. J Biol Chem 285:15234–15244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu Q, Casey JR (2007) Topology of transmembrane proteins by scanning cysteine accessibility mutagenesis methodology. Methods 41:439–450. https://doi.org/10.1016/j.ymeth.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  22. Islam ST, Lam JS (2013) Topological mapping methods for alpha-helical bacterial membrane proteins–an update and a guide. Microbiologyopen 2:350–364. https://doi.org/10.1002/mbo3.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee H, Kim H (2014) Membrane topology of transmembrane proteins: determinants and experimental tools. Biochem Biophys Res Commun 453:268–276. https://doi.org/10.1016/j.bbrc.2014.05.111

    Article  CAS  PubMed  Google Scholar 

  24. Liapakis G (2014) Obtaining structural and functional information for GPCRs using the substituted-cysteine accessibility method (SCAM). Curr Pharm Biotechnol 15:980–986

    Article  CAS  PubMed  Google Scholar 

  25. van Geest M, Lolkema JS (2000) Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev 64:13–33

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Geest M, Lolkema JS (1999) Transmembrane segment (TMS) VIII of the Na(+)/Citrate transporter CitS requires downstream TMS IX for insertion in the Escherichia coli membrane. J Biol Chem 274:29705–29711

    Article  PubMed  Google Scholar 

  27. Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145

    Article  CAS  PubMed  Google Scholar 

  28. Bogdanov M, Heacock P, Guan Z, Dowhan W (2010) Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli. Proc Natl Acad Sci U S A 107:15057–15062. https://doi.org/10.1073/pnas.1006286107

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vitrac H, Bogdanov M, Heacock P, Dowhan W (2011) Lipids and topological rules of membrane protein assembly: balance between long- and short-range lipid-protein interactions. J Biol Chem 286:15182–15194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vitrac H, Bogdanov M, Dowhan W (2013) In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proc Natl Acad Sci U S A 110:9338–9343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vitrac H, Bogdanov M, Dowhan W (2013) Proper fatty acid composition rather than an ionizable lipid amine is required for full transport function of lactose permease from Escherichia coli. J Biol Chem 288:5873–5885. https://doi.org/10.1074/jbc.M112.442988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang XB, Casey JR (1999) Trapping of inhibitor-induced conformational changes in the erythrocyte membrane anion exchanger AE1. Biochemistry 38:14565–14572

    Article  CAS  PubMed  Google Scholar 

  33. Hu YK, Kaplan JH (2000) Site-directed chemical labeling of extracellular loops in a membrane protein. The topology of the Na,K-ATPase alpha-subunit. J Biol Chem 275:19185–19191. https://doi.org/10.1074/jbc.M000641200

    Article  CAS  PubMed  Google Scholar 

  34. Nagamori S, Nishiyama K, Tokuda H (2002) Membrane topology inversion of SecG detected by labeling with a membrane-impermeable sulfhydryl reagent that causes a close association of SecG with SecA. J Biochem 132:629–634

    Article  CAS  PubMed  Google Scholar 

  35. Dale H, Angevine CM, Krebs MP (2000) Ordered membrane insertion of an archaeal opsin in vivo. Proc Natl Acad Sci U S A 97:7847–7852. https://doi.org/10.1073/pnas.140216497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kerr JE, Christie PJ (2010) Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192:4923–4934. https://doi.org/10.1128/JB.00557-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie J, Bogdanov M, Heacock P, Dowhan W (2006) Phosphatidylethanolamine and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease. J Biol Chem 281:19172–19178. https://doi.org/10.1074/jbc.M602565200

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Bogdanov M, Dowhan W (2002) Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. EMBO J 21:5673–5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng H-T, London E (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284:6079–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seurig M, Ek M, von Heijne G, Fluman N (2019) Dynamic membrane topology in an unassembled membrane protein. Nat Chem Biol 15:945–948. https://doi.org/10.1038/s41589-019-0356-9

    Article  CAS  PubMed  Google Scholar 

  41. Slavetinsky CJ, Hauser JN, Gekeler C et al (2022) Sensitizing Staphylococcus aureus to antibacterial agents by decoding and blocking the lipid flippase MprF. elife 11:e66376. https://doi.org/10.7554/eLife.66376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bernard PE, Duarte A, Bogdanov M, Musser JM, Olsen RJ (2020) Single amino acid replacements in RocA disrupt protein-protein interactions to alter the molecular pathogenesis of group A Streptococcus. Infect Immun 88. https://doi.org/10.1128/IAI.00386-20

  43. Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 105:7177–7181. https://doi.org/10.1073/pnas.0711151105

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao G, London E (2006) An amino acid “transmembrane tendency” scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Sci 15:1987–2001. https://doi.org/10.1110/ps.062286306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dobson L, Remenyi I, Tusnady GE (2015) CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Res 43:W408–W412. https://doi.org/10.1093/nar/gkv451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fluman N, Tobiasson V, von Heijne G (2017) Stable membrane orientations of small dual-topology membrane proteins. Proc Natl Acad Sci U S A 114:7987–7992. https://doi.org/10.1073/pnas.1706905114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Woodall NB, Yin Y, Bowie JU (2015) Dual-topology insertion of a dual-topology membrane protein. Nat Commun 6:8099. https://doi.org/10.1038/ncomms9099

    Article  CAS  PubMed  Google Scholar 

  48. Bayer EA, Zalis MG, Wilchek M (1985) 3-(N-Maleimido-propionyl)biocytin: a versatile thiol-specific biotinylating reagent. Anal Biochem 149:529–536

    Article  CAS  PubMed  Google Scholar 

  49. Berezuk AM, Goodyear M, Khursigara CM (2014) Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK. J Biol Chem 289:23287–23301. https://doi.org/10.1074/jbc.M114.569624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moss K, Helm A, Lu Y, Bragin A, Skach WR (1998) Coupled translocation events generate topological heterogeneity at the endoplasmic reticulum membrane. Mol Biol Cell 9:2681–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gafvelin G, von Heijne G (1994) Topological “frustration” in multispanning E. coli inner membrane proteins. Cell 77:401–412

    Article  CAS  PubMed  Google Scholar 

  52. Bogdanov M, Pyrshev K, Yesylevskyy S et al (2020) Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Sci Adv 6:eaaz6333. https://doi.org/10.1126/sciadv.aaz6333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holmgren M, Liu Y, Xu Y, Yellen G (1996) On the use of thiol-modifying agents to determine channel topology. Neuropharmacology 35:797–804. https://doi.org/10.1016/0028-3908(96)00129-3

    Article  CAS  PubMed  Google Scholar 

  54. Nasie I, Steiner-Mordoch S, Schuldiner S (2013) Topology determination of untagged membrane proteins. Methods Mol Biol 1033:121–130. https://doi.org/10.1007/978-1-62703-487-6_8

    Article  CAS  PubMed  Google Scholar 

  55. Gelis-Jeanvoine S, Lory S, Oberto J, Buddelmeijer N (2015) Residues located on membrane-embedded flexible loops are essential for the second step of the apolipoprotein N-acyltransferase reaction. Mol Microbiol 95:692–705. https://doi.org/10.1111/mmi.12897

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Basu A, Li X, Fliegel L (2015) Topological analysis of the Na+/H+ exchanger. Biochim Biophys Acta 1848:2385–2393. https://doi.org/10.1016/j.bbamem.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  57. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  CAS  PubMed  Google Scholar 

  58. Vitrac H, MacLean DM, Jayaraman V, Bogdanov M, Dowhan W (2015) Dynamic membrane protein topological switching upon changes in phospholipid environment. Proc Natl Acad Sci U S A 112:13874–13879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01GM121493-6, European Union Marie Skłodowska-Curie Grant H2020-MSCA-RISE-2015-690853, and NATO Science for Peace and Security Programme-SPS 98529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Bogdanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bogdanov, M. (2024). Exploring Uniform, Dual, and Dynamic Topologies of Membrane Proteins by Substituted Cysteine Accessibility Method (SCAM™). In: Journet, L., Cascales, E. (eds) Bacterial Secretion Systems . Methods in Molecular Biology, vol 2715. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3445-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3445-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3444-8

  • Online ISBN: 978-1-0716-3445-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics