Skip to main content

Genetic and Immunohistochemistry Tools to Visualize Rat Macrophages In Situ

  • Protocol
  • First Online:
Tissue-Resident Macrophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2713))

  • 2535 Accesses

Abstract

Macrophages contribute to many aspects of development and homeostasis, innate and acquired immunity, immunopathology, and tissue repair. Every tissue contains an abundant resident macrophage population. Inflammatory stimuli promote the recruitment of monocytes from the blood and their adaptation promotes the removal of the stimulus and subsequent restoration of normal tissue architecture. Dysregulation of this response leads to chronic inflammation and tissue injury. In many tissues, their differentiation and survival are dependent on the colony stimulating factor 1 receptor (CSF1R) signalling axis, which is highly conserved across all vertebrates. Complete loss of either CSF1R or its cognate ligands, colony stimulating factor 1 (CSF1), and interleukin 34 (IL-34), results in the loss of many tissue-resident macrophage populations. This provides a useful paradigm to study macrophages.

There are many tools used to visualize tissue-resident macrophages and their precursors, monocytes, in mice and humans. Particularly in mice there are genetic tools available to delete, enhance and manipulate monocytes and macrophages and their gene products to gain insight into phenotype and function. The laboratory rat has many advantages as an experimental model for the understanding of human disease, but the analytical resources are currently more limited than in mice. Here, we describe available genetic models, antibodies, and immunohistochemistry (IHC) methods that may be used to visualize tissue-resident macrophages in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mass E, Ballesteros I, Farlik M, Halbritter F, Gunther P, Crozet L, Jacome-Galarza CE, Handler K, Klughammer J, Kobayashi Y, Gomez-Perdiguero E, Schultze JL, Beyer M, Bock C, Geissmann F (2016) Specification of tissue-resident macrophages during organogenesis. Science 353(6304). https://doi.org/10.1126/science.aaf4238

  2. Hume DA, Irvine KM, Pridans C (2019) The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol 40(2):98–112. https://doi.org/10.1016/j.it.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  3. Shimoyama M, Laulederkind SJ, De Pons J, Nigam R, Smith JR, Tutaj M, Petri V, Hayman GT, Wang SJ, Ghiasvand O, Thota J, Dwinell MR (2016) Exploring human disease using the Rat Genome Database. Dis Model Mech 9(10):1089–1095. https://doi.org/10.1242/dmm.026021

    Article  PubMed  PubMed Central  Google Scholar 

  4. Iannaccone PM, Jacob HJ (2009) Rats! Dis Model Mech 2(5–6):206–210. https://doi.org/10.1242/dmm.002733

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smalley E (2016) CRISPR mouse model boom, rat model renaissance. Nat Biotechnol 34:893. https://doi.org/10.1038/nbt0916-893

    Article  CAS  PubMed  Google Scholar 

  6. Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM (2021) The mononuclear phagocyte system of the rat. J Immunol 206(10):2251–2263. https://doi.org/10.4049/jimmunol.2100136

    Article  CAS  PubMed  Google Scholar 

  7. Cotton WR, Gaines JF (1974) Unerupted dentition secondary to congenital osteopetrosis in the Osborne-Mendel rat. Proc Soc Exp Biol Med 146(2):554–561. https://doi.org/10.3181/00379727-146-38146

    Article  CAS  PubMed  Google Scholar 

  8. Dobbins DE, Sood R, Hashiramoto A, Hansen CT, Wilder RL, Remmers EF (2002) Mutation of macrophage colony stimulating factor (Csf1) causes osteopetrosis in the tl rat. Biochem Biophys Res Commun 294(5):1114–1120. https://doi.org/10.1016/S0006-291X(02)00598-3

    Article  CAS  PubMed  Google Scholar 

  9. Van Wesenbeeck L, Odgren PR, MacKay CA, D’Angelo M, Safadi FF, Popoff SN, Van Hul W, Marks SC Jr (2002) The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci U S A 99(22):14303–14308. https://doi.org/10.1073/pnas.202332999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Greep RO (1941) An hereditary absence of the incisor teeth. J Hered 32:397–398. https://doi.org/10.1093/oxfordjournals.jhered.a104973

    Article  Google Scholar 

  11. Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F, Jacobs R, Peruzzi B, Teti A, Helfrich MH, Rogers MJ, Villa A, Van Hul W (2007) Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest 117(4):919–930. https://doi.org/10.1172/JCI30328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moutier R, Toyama K, Charrier MF (1974) Genetic study of osteopetrosis in the Norway rat. J Hered 65(6):373–375. https://doi.org/10.1093/oxfordjournals.jhered.a108554

    Article  CAS  PubMed  Google Scholar 

  13. Weilbaecher KN, Hershey CL, Takemoto CM, Horstmann MA, Hemesath TJ, Tashjian AH, Fisher DE (1998) Age-resolving osteopetrosis: a rat model implicating microphthalmia and the related transcription factor TFE3. J Exp Med 187(5):775–785. https://doi.org/10.1084/jem.187.5.775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moutier R, Ostrowski K, Lamendin H (1989) Microphthalmia - a new recessive mutation in the Norway rat. J Hered 80(1):76–78. https://doi.org/10.1093/oxfordjournals.jhered.a110798

    Article  CAS  PubMed  Google Scholar 

  15. Perdu B, Odgren PR, Van Wesenbeeck L, Jennes K, Mackay CC, Van Hul W (2009) Refined genomic localization of the genetic lesion in the osteopetrosis (op) rat and exclusion of three positional and functional candidate genes, Clcn7, Atp6v0c, and Slc9a3r2. Calcif Tissue Int 84(5):355–360. https://doi.org/10.1007/s00223-009-9229-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Summers KM, Bush SJ, Hume DA (2020) Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol 18(10):e3000859. https://doi.org/10.1371/journal.pbio.3000859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramos-Vara JA, Miller MA (2014) When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry--the red, brown, and blue technique. Vet Pathol 51(1):42–87. https://doi.org/10.1177/0300985813505879

    Article  CAS  PubMed  Google Scholar 

  18. Taylor CR (1994) An exaltation of experts: concerted efforts in the standardization of immunohistochemistry. Hum Pathol 25(1):2–11. https://doi.org/10.1016/0046-8177(94)90164-3

    Article  CAS  PubMed  Google Scholar 

  19. O’Hurley G, Sjostedt E, Rahman A, Li B, Kampf C, Ponten F, Gallagher WM, Lindskog C (2014) Garbage in, garbage out: a critical evaluation of strategies used for validation of immunohistochemical biomarkers. Mol Oncol 8(4):783–798. https://doi.org/10.1016/j.molonc.2014.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Goor H, Harms G, Gerrits PO, Kroese FG, Poppema S, Grond J (1988) Immunohistochemical antigen demonstration in plastic-embedded lymphoid tissue. J Histochem Cytochem 36(1):115–120. https://doi.org/10.1177/36.1.3275710

    Article  PubMed  Google Scholar 

  21. van den Berg TK, Dopp EA, Dijkstra CD (2001) Rat macrophages: membrane glycoproteins in differentiation and function. Immunol Rev 184:45–57. https://doi.org/10.1034/j.1600-065x.2001.1840105.x

    Article  PubMed  Google Scholar 

  22. Pridans C, Irvine KM, Davis GM, Lefevre L, Bush SJ, Hume DA (2020) Transcriptomic analysis of rat macrophages. Front Immunol 11:594594. https://doi.org/10.3389/fimmu.2020.594594

    Article  CAS  PubMed  Google Scholar 

  23. Waddell LA, Lefevre L, Bush SJ, Raper A, Young R, Lisowski ZM, McCulloch MEB, Muriuki C, Sauter KA, Clark EL, Irvine KM, Pridans C, Hope JC, Hume DA (2018) ADGRE1 (EMR1, F4/80) is a rapidly-evolving gene expressed in mammalian monocyte-macrophages. Front Immunol 9:2246. https://doi.org/10.3389/fimmu.2018.02246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar OL, Ferrari-Cestari M, Snell CE, Chen C, Stevenson A, Davis FM, Bush SJ, Pridans C, Summers KM, Pettit AR, Irvine KM, Hume DA (2021) CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet 17(6):e1009605. https://doi.org/10.1371/journal.pgen.1009605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pridans C, Raper A, Davis GM, Alves J, Sauter KA, Lefevre L, Regan T, Meek S, Sutherland L, Thomson AJ, Clohisey S, Bush SJ, Rojo R, Lisowski ZM, Wallace R, Grabert K, Upton KR, Tsai YT, Brown D, Smith LB, Summers KM, Mabbott NA, Piccardo P, Cheeseman MT, Burdon T, Hume DA (2018) Pleiotropic impacts of macrophage and microglial deficiency on development in rats with targeted mutation of the Csf1r locus. J Immunol 201(9):2683–2699. https://doi.org/10.4049/jimmunol.1701783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Irvine KM, Caruso M, Cestari MF, Davis GM, Keshvari S, Sehgal A, Pridans C, Hume DA Analysis of the impact of CSF-1 administration in adult rats using a novel Csf1r-mApple reporter gene. J Leukocyte Biol. https://doi.org/10.1002/jlb.ma0519-149r

  27. Utans U, Arceci RJ, Yamashita Y, Russell ME (1995) Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection. J Clin Invest 95(6):2954–2962. https://doi.org/10.1172/JCI118003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. VanRyzin JW, Arambula SE, Ashton SE, Blanchard AC, Burzinski MD, Davis KT, Edwards S, Graham EL, Holley A, Kight KE, Marquardt AE, Perez-Pouchoulen M, Pickett LA, Reinl EL, McCarthy MM (2021) Generation of an Iba1-EGFP transgenic rat for the study of microglia in an outbred rodent strain. eNeuro 8(5):ENEURO.0026. https://doi.org/10.1523/ENEURO.0026-21.2021

    Article  CAS  PubMed  Google Scholar 

  29. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7(1):16878. https://doi.org/10.1038/s41598-017-17204-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  31. Irvine KM, Caruso M, Cestari MF, Davis GM, Keshvari S, Sehgal A, Pridans C, Hume DA (2020) Analysis of the impact of CSF-1 administration in adult rats using a novel Csf1r-mApple reporter gene. J Leukoc Biol 107(2):221–235. https://doi.org/10.1002/JLB.MA0519-149R

    Article  CAS  PubMed  Google Scholar 

  32. Freuchet A, Salama A, Bezie S, Tesson L, Remy S, Humeau R, Regue H, Serazin C, Flippe L, Peterson P, Vimond N, Usal C, Menoret S, Heslan JM, Duteille F, Blanchard F, Giral M, Colonna M, Anegon I, Guillonneau C (2022) IL-34 deficiency impairs FOXP3(+) Treg function in a model of autoimmune colitis and decreases immune tolerance homeostasis. Clin Transl Med 12(8):e988. https://doi.org/10.1002/ctm2.988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Turner-Stokes T, Garcia Diaz A, Pinheiro D, Prendecki M, McAdoo SP, Roufosse C, Cook HT, Pusey CD, Woollard KJ (2020) Live imaging of monocyte subsets in immune complex-mediated glomerulonephritis reveals distinct phenotypes and effector functions. J Am Soc Nephrol 31(11):2523–2542. https://doi.org/10.1681/ASN.2019121326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harvey BK (2022) LE-Tg(OTTC1005) CX3CR1-Cre-ERT2. https://irp.drugabuse.gov/organization/osd/rats/tgr-le-tgottc1005-cx3cr1-cre-ert2/. Accessed 8 Dec 2022

  35. Bryda EC, Men H, Davis DJ, Bock AS, Shaw ML, Chesney KL, Hankins MA (2019) A novel conditional ZsGreen-expressing transgenic reporter rat strain for validating Cre recombinase expression. Sci Rep 9(1):13330. https://doi.org/10.1038/s41598-019-49783-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

IHC methods were adapted from methods provided by Ngari Teakle, who also provided valuable insight for the notes and antibodies used. This work was supported by funding from the National Health and Medical Research council to D.A.H and K.M.I.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katharine M. Irvine or David A. Hume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, S., Carter-Cusack, D., Maxwell, E., Patkar, O.L., Irvine, K.M., Hume, D.A. (2024). Genetic and Immunohistochemistry Tools to Visualize Rat Macrophages In Situ. In: Mass, E. (eds) Tissue-Resident Macrophages. Methods in Molecular Biology, vol 2713. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3437-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3437-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3436-3

  • Online ISBN: 978-1-0716-3437-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics