Skip to main content

Tackling Tissue Macrophage Heterogeneity by SplitCre Transgenesis

  • Protocol
  • First Online:
Tissue-Resident Macrophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2713))

  • 2566 Accesses

Abstract

Macrophages represent a broad spectrum of distinct, but closely related tissue-resident immune cells. This presents a major challenge for the study of functional aspects of these cells using classical Cre recombinase-mediated conditional mutagenesis in mice, since single promoter-driven Cre transgenic models often display limited specificity toward their intended target. The advent of CRISPR/Cas9 technology has now provided a time- and cost-effective method to explore the full potential of binary transgenic, intersectional genetics. Specifically, the use of two promoters driving inactive Cre fragments that, when co-expressed, dimerize and only then gain recombinase activity allows the characterization and manipulation of genetically defined tissue macrophage subpopulations. Here, we will elaborate on the use of this protocol to capitalize on these recent technological advances in mouse genetics and discuss their strengths and pitfalls to improve the study of tissue macrophage subpopulations in physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park MD, Silvin A, Ginhoux F, Merad M (2022) Macrophages in health and disease. Cell 185:4259–4279. https://doi.org/10.1016/j.cell.2022.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gautier EL, Shay T, Miller J et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128. https://doi.org/10.1038/ni.2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:439–449. https://doi.org/10.1016/j.immuni.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  4. Gosselin D, Link VM, Romanoski CE et al (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340. https://doi.org/10.1016/j.cell.2014.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lavin Y, Winter D, Blecher-Gonen R et al (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326. https://doi.org/10.1016/j.cell.2014.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guilliams M, Bonnardel J, Haest B et al (2022) Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185:379–396.e38. https://doi.org/10.1016/j.cell.2021.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schyns J, Bureau F, Marichal T (2018) Lung interstitial macrophages: past, present, and future. J Immunol Res 2018:5160794. https://doi.org/10.1155/2018/5160794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Epelman S, Lavine KJ, Beaudin AE et al (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104. https://doi.org/10.1016/j.immuni.2013.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolf Y, Boura-Halfon S, Cortese N et al (2017) Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat Immunol 18:665–674. https://doi.org/10.1038/ni.3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chakarov S, Lim HY, Tan L et al (2019) Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363. https://doi.org/10.1126/science.aau0964

  11. Goldmann T, Jordão MJC, Wieghofer P et al (2016) Origin, fate and dynamics of macrophages at CNS interfaces. Nat Immunol 7:797–805

    Article  Google Scholar 

  12. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci 85:5166–5170. https://doi.org/10.1073/pnas.85.14.5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kühn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429. https://doi.org/10.1126/science.7660125

    Article  PubMed  Google Scholar 

  14. Rossant J, Nagy A (1995) Genome engineering: the new mouse genetics. Nat Med 1:592–594. https://doi.org/10.1038/nm0695-592

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, de Ribeiro MC, Iracheta-Vellve A et al (2019) Macrophage-specific hypoxia-inducible factor-1α contributes to impaired Autophagic flux in nonalcoholic Steatohepatitis. Hepatology 69:545–563. https://doi.org/10.1002/hep.30215

    Article  CAS  PubMed  Google Scholar 

  16. Clausen BE, Burkhardt C, Reith W et al (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277. https://doi.org/10.1023/a:1008942828960

    Article  CAS  PubMed  Google Scholar 

  17. Schaller E, Macfarlane AJ, Rupec RA et al (2002) Inactivation of the F4/80 glycoprotein in the mouse germ line. Mol Cell Biol 22:8035–8043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferron M, Vacher J (2005) Targeted expression of Cre recombinase in macrophages and osteoclasts in transgenic mice. Genesis 41:138–145. https://doi.org/10.1002/gene.20108

    Article  CAS  PubMed  Google Scholar 

  19. Deng L, Zhou J-F, Sellers RS et al (2010) A Novel Mouse Model of inflammatory bowel disease links mammalian target of Rapamycin-dependent Hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 176:952–967. https://doi.org/10.2353/ajpath.2010.090622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parkhurst CN, Yang G, Ninan I et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609. https://doi.org/10.1016/j.cell.2013.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yona S, Kim K-W, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91. https://doi.org/10.1016/j.immuni.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  22. Orthgiess J, Gericke M, Immig K et al (2016) Neurons exhibit Lyz2 promoter activity in vivo: implications for using LysM-Cre mice in myeloid cell research. Eur J Immunol 46:1529–1532. https://doi.org/10.1002/eji.201546108

    Article  CAS  PubMed  Google Scholar 

  23. Abram CL, Roberge GL, Hu Y, Lowell CA (2014) Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J Immunol Methods 408:89–100. https://doi.org/10.1016/j.jim.2014.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aychek T, Mildner A, Yona S et al (2015) IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nat Commun 6:6525. https://doi.org/10.1038/ncomms7525

    Article  CAS  PubMed  Google Scholar 

  25. Bar-On L, Birnberg T, Lewis KL et al (2010) CX3CR1+ CD8α+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. Proc Natl Acad Sci 107:14745–14750. https://doi.org/10.1073/pnas.1001562107

    Article  PubMed  PubMed Central  Google Scholar 

  26. Böttcher JP, Beyer M, Meissner F et al (2015) Functional classification of memory CD8+ T cells by CX3CR1 expression. Nat Commun 6:8306. https://doi.org/10.1038/ncomms9306

    Article  CAS  PubMed  Google Scholar 

  27. Gerlach C, Moseman EA, Loughhead SM et al (2016) The Chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45:1270–1284. https://doi.org/10.1016/j.immuni.2016.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haimon Z, Volaski A, Orthgiess J et al (2018) Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nat Immunol 19:636–644. https://doi.org/10.1038/s41590-018-0110-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schreiber HA, Loschko J, Karssemeijer RA et al (2013) Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J Exp Med 210:2025–2039. https://doi.org/10.1084/jem.20130903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han X, Zhang Z, He L et al (2021) A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell 28:1160–1176.e7. https://doi.org/10.1016/j.stem.2021.01.007

    Article  CAS  PubMed  Google Scholar 

  31. Hermann M, Stillhard P, Wildner H et al (2014) Binary recombinase systems for high-resolution conditional mutagenesis. Nucleic Acids Res 42:3894–3907. https://doi.org/10.1093/nar/gkt1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirrlinger J, Scheller A, Hirrlinger PG et al (2009) Split-Cre complementation indicates coincident activity of different genes in vivo. PLoS One 4:e4286. https://doi.org/10.1371/journal.pone.0004286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim J-S, Kolesnikov M, Peled-Hajaj S et al (2021) A binary Cre transgenic approach dissects microglia and CNS border-associated macrophages. Immunity 54:176–190.e7. https://doi.org/10.1016/j.immuni.2020.11.007

    Article  CAS  PubMed  Google Scholar 

  34. Arndt K, Fink GR (1986) GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5’ TGACTC 3′ sequences. Proc Natl Acad Sci 83:8516–8520. https://doi.org/10.1073/pnas.83.22.8516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9:266–269. https://doi.org/10.1038/nmeth.1892

    Article  CAS  PubMed  Google Scholar 

  36. Buch T, Heppner FL, Tertilt C et al (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2:419–426. https://doi.org/10.1038/nmeth762

    Article  CAS  PubMed  Google Scholar 

  37. Chappell-Maor L, Kolesnikov M, Kim J et al (2020) Comparative analysis of CreER transgenic mice for the study of brain macrophages: a case study. Eur J Immunol 50:353–362. https://doi.org/10.1002/eji.201948342

    Article  CAS  PubMed  Google Scholar 

  38. Fernández-Chacón M, Casquero-García V, Luo W et al (2019) iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications. Nat Commun 10:2262. https://doi.org/10.1038/s41467-019-10239-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirrlinger J, Requardt RP, Winkler U et al (2009) Split-CreERT2: temporal control of DNA recombination mediated by Split-Cre protein fragment complementation. PLoS One 4:e8354. https://doi.org/10.1371/journal.pone.0008354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keane TM, Goodstadt L, Danecek P et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294. https://doi.org/10.1038/nature10413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bogue MA, Philip VM, Walton DO et al (2019) Mouse Phenome Database: a data repository and analysis suite for curated primary mouse phenotype data. Nucleic Acids Res 48:D716–D723. https://doi.org/10.1093/nar/gkz1032

    Article  CAS  PubMed Central  Google Scholar 

  42. Jung S, Aliberti J, Graemmel P et al (2000) Analysis of Fractalkine receptor CX 3 CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114. https://doi.org/10.1128/mcb.20.11.4106-4114.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Z, Chen O, Wall JBJ et al (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep-uk 7:2193. https://doi.org/10.1038/s41598-017-02460-2

    Article  CAS  Google Scholar 

  44. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006. https://doi.org/10.1101/gr.229102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. https://doi.org/10.1093/nar/gkv1189

    Article  CAS  PubMed  Google Scholar 

  46. Frankish A, Diekhans M, Jungreis I et al (2020) GENCODE 2021. Nucleic Acids Res 49:gkaa1087. https://doi.org/10.1093/nar/gkaa1087

    Article  CAS  Google Scholar 

  47. Abascal F, Acosta R, Addleman NJ et al (2020) Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583:699–710. https://doi.org/10.1038/s41586-020-2493-4

    Article  CAS  Google Scholar 

  48. Paquet D, Kwart D, Chen A et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129. https://doi.org/10.1038/nature17664

    Article  CAS  PubMed  Google Scholar 

  49. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Concordet J-P, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46:gky354. https://doi.org/10.1093/nar/gky354

    Article  CAS  Google Scholar 

  51. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191. https://doi.org/10.1038/nbt.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664. https://doi.org/10.1101/gr.229202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miura H, Gurumurthy CB, Sato T et al (2015) CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep-uk 5:12799. https://doi.org/10.1038/srep12799

    Article  CAS  Google Scholar 

  55. Behringer RR, Gertsenstein M, Nagy A, Vinternsten K (2014) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor LaboratoryPress, Cold Spring Harbor

    Google Scholar 

  56. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918. https://doi.org/10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gertsenstein M, Nutter LMJ (2018) Engineering point mutant and epitope-tagged Alleles in mice using Cas9 RNA-guided nuclease. Curr Protoc Mouse Biol 8:28–53. https://doi.org/10.1002/cpmo.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang H, Wang H, Shivalila CS et al (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379. https://doi.org/10.1016/j.cell.2013.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qin W, Dion SL, Kutny PM et al (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200:423–430. https://doi.org/10.1534/genetics.115.176594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hashimoto M, Takemoto T (2015) Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep-uk 5:11315. https://doi.org/10.1038/srep11315

    Article  CAS  Google Scholar 

  61. Bunton-Stasyshyn RK, Codner GF, Teboul L (2021) Screening and validation of genome-edited animals. Lab Anim 56:69–82. https://doi.org/10.1177/00236772211016922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hove HV, Martens L, Scheyltjens I et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22:1021–1035. https://doi.org/10.1038/s41593-019-0393-4

    Article  CAS  PubMed  Google Scholar 

  63. Zeisel A, Muñoz-Manchado AB, Codeluppi S et al (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142

    Article  CAS  PubMed  Google Scholar 

  64. Buttgereit A, Lelios I, Yu X et al (2016) Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol 17:1397–1406. https://doi.org/10.1038/ni.3585

    Article  CAS  PubMed  Google Scholar 

  65. Inoue S, Inoue M, Fujimura S, Nishinakamura R (2010) A mouse line expressing Sall1-driven inducible Cre recombinase in the kidney mesenchyme. Genesis 48:207–212. https://doi.org/10.1002/dvg.20603

    Article  CAS  PubMed  Google Scholar 

  66. Lim HY, Lim SY, Tan CK et al (2018) Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through Hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49:1191. https://doi.org/10.1016/j.immuni.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  67. Jackson DG (2003) The lymphatics revisited new perspectives from the Hyaluronan receptor LYVE-1. Trends Cardiovas Med 13:1–7. https://doi.org/10.1016/s1050-1738(02)00189-5

    Article  CAS  Google Scholar 

  68. Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140. https://doi.org/10.1038/nn.2467

    Article  CAS  PubMed  Google Scholar 

  69. Hove HV, Antunes ARP, Vlaminck KD et al (2020) Identifying the variables that drive tamoxifen-independent CreERT2 recombination: implications for microglial fate mapping and gene deletions. Eur J Immunol 50:459–463. https://doi.org/10.1002/eji.201948162

    Article  CAS  PubMed  Google Scholar 

  70. Sanz E, Yang L, Su T et al (2009) Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci 106:13939–13944. https://doi.org/10.1073/pnas.0907143106

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wei X, Zhang J, Cui J et al (2021) A Split-Cre system designed to detect simultaneous expression of two genes based on SpyTag/SpyCatcher conjugation and Split-GFP dimerization. J Biol Chem 297:101119. https://doi.org/10.1016/j.jbc.2021.101119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Johannes Hirrlinger, Leipzig University, Germany, for sharing reagents and advice. We thank the members of the Jung laboratory for helpful discussions. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 259373024—TRR 167 (NeuroMac), the American Brain Foundation, the Roland N. Karlen Foundation, the Blythe Brenden-Mann Foundation, and the Estate of David Levinson. S. Jung is the Incumbent of the Henry. H. Drake Professional Chair of Immunology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sigalit Boura-Halfon or Steffen Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boura-Halfon, S., Haffner-Krausz, R., Ben-Dor, S., Kim, JS., Jung, S. (2024). Tackling Tissue Macrophage Heterogeneity by SplitCre Transgenesis. In: Mass, E. (eds) Tissue-Resident Macrophages. Methods in Molecular Biology, vol 2713. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3437-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3437-0_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3436-3

  • Online ISBN: 978-1-0716-3437-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics